当我增加解释变量(数值都取对数了)的时候,P值仍然接近0,特别显著,但是有一项的回顾系数跟预期的相反。然而不对处理后的数值取对数的时候这个系数是符合预期的。具体结果如下,高手帮我分析一下。谢谢啦
. reg inno stf stg stl ci
Source | SS df MS Number of obs = 330
-------------+------------------------------ F( 4, 325) = 762.46
Model | 1.2824e+10 4 3.2059e+09 Prob > F = 0.0000
Residual | 1.3665e+09 325 4204714.51 R-squared = 0.9037
-------------+------------------------------ Adj R-squared = 0.9025
Total | 1.4190e+10 329 43131281.3 Root MSE = 2050.5
------------------------------------------------------------------------------
inno | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
stf | .0013151 .0001736 7.58 0.000 .0009736 .0016566
stg | .0007964 .0000661 12.05 0.000 .0006663 .0009264
stl | -.0105536 .0026969 -3.91 0.000 -.015859 -.0052481
ci | .2306711 .1186351 1.94 0.053 -.0027187 .4640608
_cons | -846.4029 230.0508 -3.68 0.000 -1298.979 -393.8262
------------------------------------------------------------------------------
. estat vif
Variable | VIF 1/VIF
-------------+----------------------
stg | 10.71 0.093370
stf | 10.46 0.095560
stl | 7.99 0.125103
ci | 2.49 0.401792
取对数后的结果
. reg lninno lnstf lnstg lnstl lnci
Source | SS df MS Number of obs = 330
-------------+------------------------------ F( 4, 325) = 1212.34
Model | 644.754145 4 161.188536 Prob > F = 0.0000
Residual | 43.2109963 325 .132956912 R-squared = 0.9372
-------------+------------------------------ Adj R-squared = 0.9364
Total | 687.965142 329 2.09107946 Root MSE = .36463
------------------------------------------------------------------------------
lninno | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
lnstf | -.1920933 .0768406 -2.50 0.013 -.3432609 -.0409256
lnstg | .7536087 .0951244 7.92 0.000 .5664714 .940746
lnstl | .4313084 .10398 4.15 0.000 .2267496 .6358672
lnci | .3504229 .0419618 8.35 0.000 .2678719 .4329738
_cons | -8.407871 .2474467 -33.98 0.000 -8.894671 -7.921072
------------------------------------------------------------------------------
. estat vif
Variable | VIF 1/VIF
-------------+----------------------
lnstg | 37.49 0.026673
lnstl | 27.99 0.035728
lnstf | 26.31 0.038003
lnci | 5.70 0.175390
-------------+----------------------
Mean VIF | 24.37
只做lnstf 和lninno的结果
. reg lninno lnstf
Source | SS df MS Number of obs = 330
-------------+------------------------------ F( 1, 328) = 2287.07
Model | 601.675879 1 601.675879 Prob > F = 0.0000
Residual | 86.2892629 328 .263077021 R-squared = 0.8746
-------------+------------------------------ Adj R-squared = 0.8742
Total | 687.965142 329 2.09107946 Root MSE = .51291
------------------------------------------------------------------------------
lninno | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
lnstf | 1.00768 .0210709 47.82 0.000 .9662288 1.049131
_cons | -6.533342 .28855 -22.64 0.000 -7.100984 -5.9657
------------------------------------------------------------------------------
能不能解释一下其中的原因?是存在多重共线性么?那怎么解决呢



雷达卡





京公网安备 11010802022788号







