浅析基于云计算的分布式数据挖掘系统设计与实现论文
随着网络大数据信息处理技术的发展,对数据处理的规模不断增大,对数据信息处理的精度要求不断提升,采用云计算进行数据分布式网格计算,能提高数据的并行处理和调度性能,根本上提高数据的计算速度,因此,云计算成为未来大数据信息处理的主要趋势。在云计算环境下进行数据挖掘,是进行大数据信息特征提取和数据开采的基本技术,相关的算法研究受到人们的重视。文献采用云计算环境下分布式数据模糊
C均值聚类的挖掘算法,在受到较强的毗连特征干扰时,数据挖掘的精度不高。针对上述问题,本文提出一种基于分布式自适应特征调度和高阶累积量后置聚焦的
数据挖掘算法,并进行了仿真实验性能分析,得出了较好的数据挖掘效果的结论。
1基于云计算的分布式数据挖掘算法设计
为了实现对基于云计算的分布式数据挖掘系统设计,其中,数据挖掘算法设计是关键,本文提出一种基于分布式自适应特征调度和高阶累积量后置聚焦的数据挖掘算法,假设数据信息流为,数据信息流通过噪声滤波,得到数据流聚类相似性函数表示为,其是一组准平稳随机的时间序列,对数据库中的存储信息流进行能量谱密度特征提取,得到输出数据
x(t)
...


雷达卡


京公网安备 11010802022788号







