楼主: johnsonruc
3140 4

[其他] bivarite probit model with partial observability and a single dependent variable [推广有奖]

  • 0关注
  • 2粉丝

已卖:1110份资源

博士生

82%

还不是VIP/贵宾

-

威望
0
论坛币
961 个
通用积分
0.2650
学术水平
34 点
热心指数
39 点
信用等级
29 点
经验
8288 点
帖子
299
精华
0
在线时间
275 小时
注册时间
2010-9-6
最后登录
2025-12-9

楼主
johnsonruc 发表于 2012-3-4 10:38:05 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
求组在stata软件中如何实现;
bivarite probit model with partial observability and a single dependent variable
求代码
谢谢
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Dependent Variable Ability Partial SINGLE single 如何 软件

沙发
蓝色 发表于 2012-3-4 13:23:15
http://www.stata.com/support/faqs/stat/biprobit.html
The following FAQ is based on postings on Statalist.
How do I fit a bivariate probit model with partial observability and a single dependent variable?
Title   Bivariate probit with partial observability and a single dependent variable
Author Vince Wiggins and Brian Poi, StataCorp
Date March 2004; updated August 2010

--------------------------------------------------------------------------------

Question:
I’m trying to estimate a bivariate probit with partial observability following Abowd and Farber (1982), Maddala (1983), and Poirier (1980). The problem is that we have only one dependent variable (the product of the two latent dependent variables), and the biprobit command in Stata requires two different dependent variables!
Answer:
The bivariate probit (biprobit) model has two binary dependent variables that we assume are correlated. Partial observability occurs when we can observe a positive outcome for only one of the dependent variables when the other is also positive. For example, assume that y1 and y2 are our two dependent variables and we have the following cross-tabulation of the outcomes:

. tabulate y1 y2

            |          y2
         y1 |         0          1 |     Total
-----------+----------------------+----------
          0 |        26         26 |        52
          1 |         8         14 |        22
-----------+----------------------+----------
      Total |        34         40 |        74
With partial observability, we know only that 14 outcomes are positive for both y1 and y2. We could think of this as a single dependent variable, say y, that is the product of y1 and y2.

The writer says that he does not have two dependent variables; his single dependent variable already reflects the partially observed data. He has a single dependent variable y with 14 positive outcomes and 60 negative outcomes.

The syntax for biprobit is designed so that we can fit a partial observability model whether we have complete data, such as y1 and y2 above, or the product of the two, such as y above. The partial observability model uses only the information from the product of the two dependent variables. So, if we already have that product, we can use any pair of dependent variables that, when multiplied together, produce the same set of positive outcomes observed in the product dependent variable, y.

Many other pairs of variables will do this, and any pair when multiplied to produce the pattern in y will imply the same partial observability model. biprobit will not, however, let us specify a dependent variable that is always 1. To duplicate y would be the easiest way to produce two binary variables that when multiplied together have the same pattern of 0s and 1s as our product variable y.

Taking the easy way and assuming that the single product dependent variable is y, we can type

. generate y2 = y
. biprobit (y x1 x2 x3)(y2 x1 x2 x4), partial
to estimate a bivariate probit model with partial observability.

We use the syntax for a seemingly unrelated bivariate probit model so that we can specify different regressors for the equations for y1 and y2. With the partially observable variant of the model, we only observe the product of y1 and y2. The partially observable model is particularly difficult to estimate when the same set of regressors is used for both equations, and the parameters may not even be identified. Poirier (1980) discusses in detail identification for this model.

References
Abowd, J. M., and H. S. Farber. 1982. Job queues and the union status of workers. Industrial and Labor Relations Review 35: 354–367.
Maddala, G. S. 1983. Limited-Dependent and Qualitative Variables in Econometrics. Cambridge: Cambridge University Press.
Poirier, D. J. 1980. Partial observability in bivariate probit models. Journal of Econometrics 12: 209–217.

藤椅
johnsonruc 发表于 2012-3-4 15:46:54
谢谢楼上的回答。你的回复我也在网上找到了。你觉得其中的代码是正确的么?关系到毕业论文,希望多多指点。

板凳
蓝色 发表于 2012-3-4 17:59:05
我想应该没有问题
这是stata官方主页贴出的FAQ,说明问的人多
我想我可没有人家那么高的水平。

报纸
johnsonruc 发表于 2012-3-13 11:00:35
蓝色 发表于 2012-3-4 17:59
我想应该没有问题
这是stata官方主页贴出的FAQ,说明问的人多
我想我可没有人家那么高的水平。
请问 有没有用过该模型,我怎么弄不出结果呢

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2025-12-31 19:57