楼主: fsaasdfs~
90 0

[学习资料] 几类具有良好密码学性质的布尔函数的构造 [推广有奖]

  • 0关注
  • 10粉丝

已卖:2152份资源
好评率:99%
商家信誉:一般

博士生

22%

还不是VIP/贵宾

-

威望
0
论坛币
350 个
通用积分
2582.7589
学术水平
6 点
热心指数
6 点
信用等级
5 点
经验
-6042 点
帖子
0
精华
0
在线时间
527 小时
注册时间
2012-8-29
最后登录
2026-2-1

楼主
fsaasdfs~ 发表于 2025-1-21 18:42:20 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
几类具有良好密码学性质的布尔函数的构造
在实际应用中,为了抵抗已知的密码攻击手段,流密码中使用的布尔函数应同时满足以下几个密码学性质:平衡性、良好的(快速)代数免疫性、高非线性度、高代数次数、适当的相关免疫度等。本论文主要研究流密码设计中所使用的布尔函数的密码学性质以及具有良好密码学性质的布尔函数的构造方法。
首先,我们研究k阶Reed-Muller码RM(k,n)的生成矩阵G(k,n)中列向量的线性关系,其中k=[n/2]-1,n是一个整数。由于研究向量空间F2n上的布尔函数的代数免疫度可以转化为计算生成矩阵G(k,n)的子矩阵的秩,所以,该线性关系可以用来快捷地验证向量空间F2n上的布尔函数的代数免疫度。
作为应用,我们构造出两类具有最优代数免疫度的布尔函数,并且利用该线性关系验证了几类已知布尔函数的代数免疫度。其次,基于k阶Reed-Muller码RM(k,n)的生成矩阵G(k,n)中列向量的线性关系,通过修改严格择多逻辑函数的支撑集,我们构造出两类具有最优代数免疫度的平衡布尔函数,同时从理论上推导了这两类布尔函数的非线性度下界。
当变元个数n较小时,由计算机程序验证可知这两类布 ...
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:密码学 Muller 计算机程序 线性关系 Reed

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-2-4 09:18