楼主: yangz313
408 7

[书籍介绍] Spatial Statistics for Data Science: Theory and Practice with R (2023) [推广有奖]

  • 0关注
  • 1粉丝

已卖:1175份资源

硕士生

25%

还不是VIP/贵宾

-

威望
0
论坛币
10157 个
通用积分
108.0855
学术水平
0 点
热心指数
2 点
信用等级
0 点
经验
5378 点
帖子
17
精华
0
在线时间
258 小时
注册时间
2010-6-26
最后登录
2025-11-21

楼主
yangz313 发表于 2025-1-23 12:55:32 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
新书信息:Moraga, Paula. (2023). Spatial Statistics for Data Science: Theory and Practice with R. Chapman & Hall/CRC Data Science Series. ISBN 9781032633510


Spatial Statistics for Data Science_ Theory and Practice with R (Chapman & Hal.pdf (58.06 MB, 需要: 20 个论坛币)
Preface

Spatial Statistics for Data Science: Theory and Practice with R describes statistical methods, modeling approaches, and visualization techniques to analyze spatial data using R. The book starts by providing a comprehensive overview of the types of spatial data and R packages for spatial data retrieval, manipulation, and visualization. Then, it provides a detailed explanation of the theoretical concepts of spatial statistics, along with fully reproducible examples demonstrating how to simulate, describe, and analyze areal, geostatistical, and point pattern data in various applications.

The book combines theory and practice using real-world data science examples such as disease risk mapping, air pollution prediction, species distribution modeling, crime mapping, and real state analyses. The book covers the following topics:

  • Spatial data including areal, geostatistical, and point patterns
  • Coordinate reference systems and geographical data storages
  • R packages for retrieval, manipulation, and visualization of spatial data
  • Statistical methods to simulate, describe, and analyze spatial data
  • Areal data: neighborhood matrices, spatial autocorrelation, Bayesian spatial models
  • Geostatistical data: Gaussian random fields, spatial interpolation, Kriging, model-based geostatistics
  • Point patterns: kernel intensity estimation, clustering, log-Gaussian Cox processes
  • Fitting and interpreting Bayesian spatial models using the integrated nested Laplace approximation (INLA) and stochastic partial differential equation (SPDE) approaches
  • Model assessment criteria and cross-validation
  • Effective communication using interactive visualizations and dashboards

The book utilizes publicly available data and offers clear explanations of the R code for importing, manipulating, analyzing, and visualizing data, as well as the interpretation of the results. This ensures contents are easily accessible and reproducible for students, researchers, and practitioners.


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Data Science Statistics statistic Practice Science

已有 1 人评分论坛币 收起 理由
cheetahfly + 30 奖励积极上传好的资料

总评分: 论坛币 + 30   查看全部评分

沙发
黄河青石(真实交易用户) 在职认证  发表于 2025-1-24 09:08:10
谢谢分享!

藤椅
Edwardu(未真实交易用户) 发表于 2025-1-25 09:47:04
谢谢分享

板凳
512661101(未真实交易用户) 发表于 2025-1-25 09:54:23
谢谢分享!

报纸
happysteps(真实交易用户) 发表于 2025-1-25 09:55:38
谢谢分享!

地板
是没什么(未真实交易用户) 发表于 2025-1-25 10:03:37
谢谢分享!

7
babylaugh(未真实交易用户) 发表于 2025-1-25 10:11:32
点赞分享

8
qchangcheng(未真实交易用户) 在职认证  发表于 2025-1-25 11:00:11

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群
GMT+8, 2025-12-31 15:27