楼主: defeniks
1805 0

[教与学] Evolutionarily Stable Strategies of Random Games, and the Vertices of Random Pol [推广有奖]

  • 0关注
  • 0粉丝

已卖:168份资源

本科生

34%

还不是VIP/贵宾

-

威望
0
论坛币
1351 个
通用积分
0
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
736 点
帖子
71
精华
0
在线时间
12 小时
注册时间
2007-2-9
最后登录
2014-5-5

楼主
defeniks 发表于 2007-2-15 00:36:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

91701.pdf (595.13 KB, 需要: 23 个论坛币)

An evolutionarily stable strategy (ESS) is an equilibrium strategy

that is immune to invasions by rare alternative (“mutant”) strategies.

Unlike Nash equilibria, ESS do not always exist in finite games. In

this paper we address the question of what happens when the size of

the game increases: does an ESS exist for “almost every large” game?

Letting the entries in the n × n game matrix be independently ran-

domly chosen according to a distribution F, we study the number of

ESS with support of size 2. In particular, we show that, as n → ∞, the

probability of having such an ESS: (i) converges to 1 for distributions

F with “exponential and faster decreasing tails” (e.g., uniform, nor-

mal, exponential); and (ii) it converges to 1 1/e for distributions

F with “slower than exponential decreasing tails” (e.g., lognormal,

Pareto, Cauchy).


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Strategies Evolution Vertices Strateg random random games Stable Vertices Polygons

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-31 21:04