楼主: fsaasdfs~
110 0

[学习资料] 主成分分析与因子分析的优缺点 [推广有奖]

  • 0关注
  • 10粉丝

已卖:2124份资源
好评率:99%
商家信誉:一般

博士生

21%

还不是VIP/贵宾

-

威望
0
论坛币
350 个
通用积分
2576.8229
学术水平
6 点
热心指数
6 点
信用等级
5 点
经验
-6002 点
帖子
0
精华
0
在线时间
524 小时
注册时间
2012-8-29
最后登录
2026-1-20

楼主
fsaasdfs~ 发表于 2025-3-6 10:08:28 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
主成分分析就是将
多项指标转化为少数几项综合指标,用综合指标来解释多变量的方差- 协方差结构.综合指标即为主成分.所得出的少数几个主成分,要尽可能多地保留原始变量的信息,且彼此不相关.
因子分析是研究如何以最少的信息丢失,将众多原始变量浓缩成少数几个因子变量,以及如何使因子变量具有较强的可解释性的一种多元统计分析方法.
聚类分析是依据实验数据本身所具有的定性或定量的特征来对大量的数据进行分组归类以了解数据集的内在结构,并且对每一个数据集进行描述的过程.其主要依据是聚到同一个数据集中的样本应该彼此相似,而属于不同组的样本应该足够不相似.
三种分析方法既有区别也有联系,本文力图将三者的异同进行比较,并举例说明三者在实际应用中的联系,以期为更好地利用这些高级统计方法为研究所用有所裨益.
二、基本思想的异同
(一) 共同点
主成分分析法和因子分析法都是用少数的几个变量(因子) 来综合反映原始变量(因子) 的主要信息,变量虽然较原始变量少,但所包含的信息量却占原始信息的85 %以上,所以即使用少数的几个新变量,可信度也很高,也可以有效地解释问题.并且新的变量彼此间互不相关,消除了多重共线性.这两 ...
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:主成分分析 因子分析 优缺点 主成分 统计分析方法

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-24 05:23