第 2 章
含糊聚类分析
§2.1 含糊矩阵
定义1 设R = (rij)m×n,若0≤rij≤1,则称R为含糊矩阵. 当rij只取0或1时,称R为布尔(Boole)矩阵. 当含糊方阵R = (rij)n×n对角线上元素rii都为1时,称R为含糊自反矩阵.
定义2 设A=(aij)m×n,B=(bij)m×n都是含糊矩阵,相等:A = B aij = bij;包含:A≤B aij≤bij;并:A∪B = (aij∨bij)m×n;交:A∩B = (aij∧bij)m×n;余:Ac = (1- aij)m×n.
含糊矩阵并、交、余运算性质
幂等律:A∪A = A,A∩A = A;交换律:A∪B = B∪A,A∩B = B∩A;结合律:(A∪B)∪C = A∪(B∪C), (A∩B)∩C = A∩(B∩C);吸收律:A∪(A∩B) = A,A∩(A∪B) = A; 分配律:(A∪B)∩C = (A∩C )∪(B∩C); (A∩B)∪C = (A∪C )∩(B∪C);0-1律: A∪O = A,A∩O = O; A∪E = E,A∩E = A;还原律:(Ac) ...


雷达卡




京公网安备 11010802022788号







