楼主: fanman
1199 3

[其他] 求证明John Hull书中提到的ln[E(x)] > E[ln(x)]ln[E(x)] equal E[ln(x)]+ [推广有奖]

  • 86关注
  • 2粉丝

已卖:36份资源

副教授

42%

还不是VIP/贵宾

-

威望
0
论坛币
0 个
通用积分
1.0024
学术水平
7 点
热心指数
12 点
信用等级
5 点
经验
12457 点
帖子
563
精华
0
在线时间
1121 小时
注册时间
2010-3-16
最后登录
2022-2-13

楼主
fanman 发表于 2012-8-18 18:18:35 |AI写论文
30论坛币
John Hull在讲解B-S模型一章,在the expected return一小节中用到一个结论:“ in fact,ln[E(x)] > E[ln(x)]”,如何证明啊
附件: 你需要登录才可以下载或查看附件。没有帐号?我要注册

最佳答案

KevinOu 查看完整内容

This is an application of Jenson's Inequality, which says that the expectation of a strictly concave-down function of a random variable is smaller than the function of the expectation of the random variable. A function f is said to be strictly concave-down if for any x and y within its domain and any a between 0 and 1, f(a*x+(1-a)*y)>a*f(x)+(1-a)*f(y). Of course, the domain must be a convex set s ...
关键词:John Hull equal hull John hul expected return 模型 如何

沙发
KevinOu 发表于 2012-8-18 18:18:36
This is an application of Jenson's Inequality, which says that the expectation of a strictly concave-down function of a random variable is smaller than the function of the expectation of the random variable.
A function f is said to be strictly concave-down if for any x and y within its domain and any a between 0 and 1, f(a*x+(1-a)*y)>a*f(x)+(1-a)*f(y). Of course, the domain must be a convex set so that a*x+(1-a)*y falls in the domain of f.
Jenson's Inequality follows from the definition above, though not really directly. However, please note that a convex combination (the form a*u+(1-a)*v) is the expectation of a two-point distribution taking value either u or v. Expand two-point case to finitely many point case, then to countably infinitely many point case, and finally to Lebesgue integration case. Just apply definitions and note that expectation is a special integral, and Jenson's Inequality will be reached.
For this particular case, note that the function ln is strictly concave-down.
已有 1 人评分学术水平 热心指数 信用等级 收起 理由
fanman + 1 + 1 + 1 热心帮助其他会员

总评分: 学术水平 + 1  热心指数 + 1  信用等级 + 1   查看全部评分

藤椅
jerryren 发表于 2012-8-18 18:45:10
简单讲,这是由凸函数的性质决定的。简单说,函数值的平均大于平均的函数值(你可以想象一个凸函数),而Ln是凸函数。
具体证明,请参阅http://en.wikipedia.org/wiki/Jensen's_inequality
已有 1 人评分学术水平 热心指数 信用等级 收起 理由
fanman + 1 + 1 + 1 热心帮助其他会员

总评分: 学术水平 + 1  热心指数 + 1  信用等级 + 1   查看全部评分

板凳
fanman 发表于 2012-8-18 19:06:46
谢谢两位这么及时的解答,但最佳答案只能给一人,就给KevinOu朋友,同样感谢jerryren

之前用不等式证明陷入困境,看来要补的数学还好多!

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-3 11:37