Uncertainty Principles of Encoding GANs
Ruili Feng 1 Zhouchen Lin 2 3 Jiapeng Zhu 4 Deli Zhao 5 Jinren Zhou 5 Zheng-Jun Zha 1
Abstract 1. Introduction
Generative Adversarial Networks (GANs) (Goodfellow
The compelling synthesis results of Generative et al., 2014) are powerful unsupervised models of estab-
Adversarial Networks (GANs) demonstrate rich lishing maps from simple latent distributions to ...


雷达卡




京公网安备 11010802022788号







