Warp Consistency for Unsupervised Learning of Dense Correspondences
Prune Truong Martin Danelljan Fisher Yu Luc Van Gool
Computer Vision Lab, ETH Zurich, Switzerland
{prune.truong, martin.danelljan, vangool}@vision.ee.ethz.ch i@yf.io
Abstract
I’
The key challenge in learning dense correspondences
lies in the lack of ground-truth matches for real image pairs.
While photometr ...


雷达卡




京公网安备 11010802022788号







