两区间微分算子自伴域的实参数解刻画及谱的离散性
本文上要围绕两区间上微分算子自伴域的刻画及几类微分算子谱的离散性展开研究.多年来带转移条件的Sturm-Liouville司题一直受到很多数学、物理工作者的关注,而具有转移条件的问题也可以理解成两区间上问题的一种特殊情形,即两个区间相邻,重合端点处的左右边界条件构成了转移条件.在这一思想的启发下,1986年,Everitt-Zettl在Hilbert空间的直和框架下研究了两区间上二阶Sturm-Liouville问题的自伴实现理论.然而两个区间上的问题不能简单的看成是各自区间上算子的直和,更有趣的、也是更重要的问题是两个区间之间存在某种程度上的关联.因止Everitt-Zettl在文[9]中研究了两区间理论.由于自伴算子的谱是实的,用实参数解刻画自伴域不仅易于找到显式的解更重要的是会产生与谱相关的信息.本文在Hilbert空间的直和框架下,利用微分方程的实参数解首先给出一端正则一端奇异的两区间上微分算子自伴域的完全刻画.在直和空间中构造自伴算子的一种简单方式就是取每个空间中自伴算子的直和.如果这样得到的自伴算子就是由两区间上微分方程生成的 ...


雷达卡




京公网安备 11010802022788号







