两区间二阶微分算子自伴域的辛几何刻画
本文主要从辛几何角度研究两区间二阶微分算子自伴域的描述.微分算子是线性算子中最基本也是应用最广泛的一类无界可闭线性算子.其研究领域包括微分算子的亏指数、自伴扩张、谱分析等许多重要分支.微分算子定义域的选择是微分算子研究中的一个十分重要分支.在对称微分算式给定的前提下,对所研究的算子提出的具体要求最终体现在对定义域的限制上.1986年,Everitt W.N.和Zettl A.提出了两区间理论,从最大算子域中选取两组向量,给出了两区间二阶微分算子自伴域的描述.2012年,索建青用实参数解刻画了两区间二阶微分算子自伴域.1999年,Everitt W.N.和Zettl A.将辛几何的方法应用于研究微分算子的自伴问题,并给出了对称微分算子的自共轭扩张与由算子定义域构造的复辛空间中完全Lagrangian子空间是一一对应的.本文将用辛几何全新角度去描述两区间二阶微分算子自伴域.由最大算子域构造辛空间,引入辛形式,给出自伴边界条件的代数结构.由于二阶对称微分算子根据亏指数的不同分为极限点型与极限圆型,极限点型时亏指数为(1,1),极限圆型时亏指数为(2,2) ...


雷达卡




京公网安备 11010802022788号







