模型整体可以跑通,但得到的数值结果和文中报告的不一致。在复现过程中遇到两个比较困扰的问题,想向大家请教一下。一、稳态值给得不完整,资本 K 的处理是否合理?
论文中只给出了部分稳态值,例如稳态投资 I,但没有直接给出稳态资本存量 K。
在 Dynare 实现时,为了闭合模型,我的做法是:
利用稳态投资条件(如 I=δK )根据给定的 I 反推出稳态 K。将该 K 的具体数值代入 steady state
这样模型在数值上是可以跑通的,但我不太确定
二、均衡条件中有 Tobin’s q,但论文中并未将其内生化论文的均衡条件里包含 Tobin’s q,但文中:
没有将q 明确列为内生变量
在 Dynare 中,如果保留q 但会缺失一个方程,模型是跑不起来的。
目前我的处理方式是:
直接假设稳态下q=1在模型方程中相应地用 1 进行替换
这样虽然可以运行代码,但我不确定:
这是否是作者默认的设定(例如稳态规范化)
还是说q 本应作为内生变量,引入额外的最优条件,但论文中省略了
想请教各位老师和同学:
在这种情况下,由稳态投资反推出资本存量是否是合理做法?
Tobin’s q 在 Dynare 中更合适的处理方式是什么?
是否有人复现过这篇文章,或遇到过类似“论文未给全稳态 / 变量隐含处理”的情况?
这是我的编写的dynare代码:
var A C CA Dp G I K L M MC pstar pZ Pi R RK T U w X Y Z ETA Theta Psi Omega;
varexo eA eG eETA;
parameters alpha beta deltaK gammaI phi1 phi2 theta xi muL phiL iota_pi rhoA rhoG rhoETA sigmaA sigmaG sigmaETA deltaM phi_emis gamma0 gamma1 gamma2 Abar Gbar Rbar PiBar ETAs;
alpha = 1/3; // Capital share
beta = 0.99; // Discount factor
deltaK = 0.025; // Depreciation rate
gammaI = 15; // Investment adjustment cost
phiL = 1; // Inverse Frisch elasticity
theta = 6; // Price elasticity of substitution
xi = 0.75; // Calvo parameter
muL = 19.8413; // Labor disutility
iota_pi = 3; // Taylor-rule coefficient
deltaM = 0.0021; // Pollution decay (1 - deltaM = 0.9979)
phi_emis = 0.45; // Emissions-output ratio
phi1 = 0.185; // Abatement cost scale
phi2 = 2.8; // Abatement cost curvature
gamma0 = 0.0013950;
gamma1 = -0.0000066722;
gamma2 = 0.000000014647;
rhoA = 0.95;
rhoG = 0.97;
rhoETA = 0.15;
sigmaA = 0.0045;
sigmaG = 0.0053;
sigmaETA= 0.0024;
Abar = 1.248;
Gbar = 0.1022;
ETAs = 1;
PiBar = 1;
Rbar = 1/beta;
model;
// 1 (A17) Euler consumption
1 = beta*(C/C(+1))*(R/Pi(+1));
// 2 (A18) Labor–leisure trade-off
muL*L^phiL = (1/C)*w;
// 3 (A19) Capital Euler (investment)
beta*(1/C(+1))*(RK(+1)+gammaI*(I(+1)/K(+1)-deltaK)*(I(+1)/K(+1))^2) - (1/C)*1 + beta*(1-deltaK)*(1/C(+1)) = 0;
// 4 (A20) Capital-adjustment condition
1 = 1 + gammaI*(I/K - deltaK) + 0.5*gammaI*(I/K - deltaK)^2;
// 5 (A21) Resource constraint
Y = C + I + G + CA + 0.5*gammaI*(I/K - deltaK)^2*I;
// 6 (A22) Capital accumulation
K = (1 - deltaK)*K(-1) + I;
// 7 (A23) Production with pollution damages
Y = (1 - (gamma0 + gamma1*M + gamma2*M^2))*A*K^alpha*L^(1-alpha)/Dp;
// 8 (A24) Labor FOC (wage)
w = (1 - alpha)*(1 - (gamma0 + gamma1*M + gamma2*M^2))*A*K^alpha*L^(-alpha)*Psi ;
// 9 (A25) Capital FOC (rental rate)
RK = alpha*(1 - (gamma0 + gamma1*M + gamma2*M^2))*A*K^(alpha-1)*L^(1-alpha)*Psi ;
// 10 (A26) Abatement optimality
phi_emis*pZ = phi1*phi2*U^(phi2-1);
// 11 (A27) Optimal Calvo price
pstar = (theta/(theta-1))*(X + Omega)/Theta;
// 12 (A28) X_t recursion
X = (1/C)*Psi*Y + xi*beta*Pi(+1)^theta*X(+1);
// 13 (A29) Theta_t recursion
Theta = (1/C)*Y + xi*beta*Pi(+1)^(theta-1)*Theta(+1);
// 14 (A30) Omega_t recursion
Omega = (1/C)*(phi1*U^phi2 + pZ*(1-U)*phi_emis)*Y + xi*beta*Pi(+1)^theta*Omega(+1);
// 15 (A31) Calvo price-index law of motion
1 = xi*Pi^(theta-1) + (1 - xi)*pstar^(1 - theta);
// 16 (A32) Price dispersion
Dp = (1 - xi)*pstar^(-theta) + xi*Pi^theta*Dp(-1);
// 17 (A33) Real marginal cost
MC = Psi + phi1*U^phi2 + pZ*(1 - U)*phi_emis;
// 18 (A34) Aggregate emissions
Z = (1 - U)*phi_emis*Y*Dp;
// 19 (A35) Pollution accumulation
M = (1 - deltaM)*M(-1) + Z + 1.296473;
// 20 (A36) Aggregate abatement cost
CA = phi1*U^phi2*Y*Dp;
// 21 (A37) Government budget constraint
T + pZ*Z = G;
// 22 (A38) Monetary policy rule (Taylor)
R = Rbar*(Pi/PiBar)^iota_pi*ETA;
// 23 (A39) TFP process
log(A) = (1 - rhoA)*log(Abar) + rhoA*log(A(-1)) + eA;
// 24 (A40) Public spending process
log(G) = (1 - rhoG)*log(Gbar) + rhoG*log(G(-1)) + eG;
// 25 (A41) Monetary shock (state variable)
log(ETA) = rhoETA*log(ETA(-1)) + eETA;
end;
initval;
A = 1.248;
Pi = 1;
R = 1/beta;
M = 800;
U = 0.00000000000000000000000000000000000001;
Psi = 1;
Dp = 1;
ETA = 1;
L = 0.2;
RK = (1-beta*(1-deltaK))/beta;
K=6.15708;
Y = (1 - (gamma0 + gamma1*M + gamma2*M^2))*A*K^alpha*L^(1-alpha);
I = deltaK*K;
CA = phi1*U^phi2*Y;
G = Gbar*Y;
C = Y - I - G - CA;
pZ = (phi1*phi2*U^(phi2-1))/phi_emis;
MC = Psi + phi1*U^phi2 + pZ*(1 - U)*phi_emis;
Z = (1-U)*phi_emis*Y;
pstar = 1;
T = G - pZ*Z;
Omega = ( (1/C)*(phi1*U^phi2 + pZ*(1-U)*phi_emis)*Y ) / (1 - xi*beta);
X = ( (1/C)*Psi*Y ) / (1 - xi*beta);
Theta = ( (1/C)*Y ) / (1 - xi*beta);
w = (1-alpha)*(1 - (gamma0 + gamma1*M + gamma2*M^2))*A*K^alpha*L^(-alpha)*Psi;
end;
steady;
model_info;
model_diagnostics;
check;
shocks; var eA; periods 1; values 0.01; end;
shocks; var eG; periods 1; values 0.02; end;
shocks; var eETA; periods 1; values 0.025; end;
perfect_foresight_setup(periods=20);
perfect_foresight_solver;
rplot L ;
rplot C ;
rplot MC ;


雷达卡



京公网安备 11010802022788号







