350 0

[英文文献] The limiting properties of the QMLE in a general class of asymmetric volati... [推广有奖]

  • 0关注
  • 0粉丝

等待验证会员

学前班

0%

还不是VIP/贵宾

-

威望
0
论坛币
0 个
通用积分
0
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
10 点
帖子
0
精华
0
在线时间
0 小时
注册时间
2020-9-19
最后登录
2020-9-19

楼主
国际货物运输840 发表于 2004-9-19 14:47:41 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
英文文献:The limiting properties of the QMLE in a general class of asymmetric volatility models-一类非对称波动率模型中QMLE的极限性质
英文文献作者:Christian M. Dahl,Emma M. Iglesias
英文文献摘要:
In this paper we analyze the limiting properties of the estimated parameters in a general class of asymmetric volatility models which are closely related to the traditional exponential GARCH model. The new representation has three main advantages over the traditional EGARCH: (1) It allows a much more flexible representation of the conditional variance function. (2) It is possible to provide a complete characterization of the asymptotic distribution of the QML estimator based on the new class of nonlinear volatility models, something which has proven very difficult even for the traditional EGARCH. (3) It can produce asymmetric news impact curves where, contrary to the traditional EGARCH, the resulting variances do not excessively exceed the ones associated with the standard GARCH model, irrespectively of the sign of an impact of moderate size. Furthermore, the new class of models considered can create a wide array of news impact curves which provide the researcher with a richer choice set relative to the traditional. We also show in a Monte Carlo experiment the good finite sample performance of our asymptotic theoretical results and we compare them with those obtained from a parametric and the residual based bootstrap. Finally, we provide an empirical illustration.

本文分析了一类与传统指数GARCH模型密切相关的非对称波动率模型的估计参数的极限性质。与传统的EGARCH相比,新的表示法有三个主要优点:(1)它允许条件方差函数的更灵活的表示法。(2)有可能提供基于新一类非线性波动率模型的QML估计量的渐近分布的一个完整的表征,这已经被证明是非常困难的,即使是传统的EGARCH。(3)可以产生非对称的新闻影响曲线,与传统EGARCH相反,其结果的方差并不过分超过标准GARCH模型的方差,不考虑中等规模的影响的符号。此外,所考虑的新一类模型可以创建广泛的新闻影响曲线,为研究者提供了比传统的更丰富的选择集。在蒙特卡洛实验中,我们也展示了我们的渐近理论结果的良好的有限样本性能,并与那些从参数和基于残差的bootstrap得到的结果进行了比较。最后,我们提供了一个实证的例证。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝


您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-29 03:03