- Foundations (5)
- General abstract algebra (7)
- Linear algebra (3)
- Number theory (5)
- Combinatorics and discrete mathematics (1)
- Real analysis (10)
- Multivariable calculus (2)
- Complex analysis (5)
- Differential equations (2)
- Point-set topology (5)
- Differential geometry (4)
- Classical geometry (3)
FoundationsHalmos, Naive set theory
The best book for a first encounter with “real” set theory. Like everything Paul Halmos writes, it's stylistically beautiful. A very skinny book, broken into very short sections, each dealing with a narrow topic and with an exercise or three. It requires just a little sophistication, but no great experience with “real” math; we use this one for YSP kids sometimes too.
Fraenkel, Abstract set theoryFraenkel was the F in ZFC, and he gives a suitably rigorous development of set theory from an axiomatic viewpoint. Unfortunately, for the philosophical foundations of the axioms he refers to another book (Fraenkel and Bar-Hillel, Foundations of set theory), which is missing from Eckhart Library. Good for culture.
Ebbinghaus/Flum/Thomas, Mathematical logicThe only logic book I can name off the top of my head, this is the 277 book. I found it readable but boringly syntactic (well, maybe that's elementary logic).
Enderton, A mathematical introduction to logicLook, another logic book! This one might be preferable just because there's much more talking about what's going on and less unmotivated symbol-pushing than in E/F/T. The flip side of that is, the constructions may or may not be epsilon less precise. I'm not a logician; if you are, write some reviews so I can replace these lousy ones!
Landau, Foundations of analysisThis is the book that invented the infamous Landau “Satz-Beweis” (theorem-proof) style. There is nothing in this book except the inexorable progression of theorems and proofs, which is perhaps appropriate for a construction of the real numbers from nothing, but makes horrible bathroom reading. Read for culture.
General abstract algebraThe situation here is problematic, because there are many good books which are just a little hard to swallow for an average 257 student, but precious few good ones below that. But you learn by doing, so here we go:
(Difficulty: moderate)Dummit/Foote, Abstract algebra[PC] I bought this for 257—I was at the age where I uncritically bought all assigned texts (actually, I may still be at that age; I don't recall passing on buying any course texts recently), but as Chris knows the joke was on me, since we used the instructor's lecture notes and not Dummit/Foote at all. So I didn't really read it that much at the time. I have read it since, since it is one of two general abstract algebra books in my collection. I think it's an excellent undergraduate reference in that it has something to say, and often a lot to say, about precisely everything that an undergraduate would ever run into in an algebra class—and I'm not even exaggerating. I would say this is a good book to have on your shelf if you're an undergraduate because you can look up anything; I used it this fall as a solid supplementary reference for character theory to Alperin and Bell's Groups and representations, and it had an amazing amount of material, all clearly explained. [Warning: there is an incorrect entry in one of the character tables; it's either A_5 or S_5, I can't remember which.] Look elsewhere, particularly below, for a good exposition of modules over a principal ideal domain; D/F's exposition is convoluted and overly lengthy. In fact, overall I would use this book as a reference instead of a primary text, because the idea of reading it through from start to finish scares me. It also has many, many good problems which develop even more topics (e.g., commutative algebra and algebraic geometry).
Herstein, Topics in algebraThis is a classic text by one of the masters. Herstein has beautiful and elementary treatments of groups and linear algebra (in the context of module theory). But there is no field theory, and he writes mappings on the right, which annoys many people. Sometimes he suffers from the same flaw of excessive elementarity as Spivak's calculus book, but overall the treatment is quite pretty. Many good exercises. (Not to be confused with Abstract algebra, which is a much-cut version for non-honors classes.)
[PC] But this is the book I would use if I were a well-prepared undergraduate wanting to learn abstract algebra for the first time. Wonderful exposition—clean, chatty but not longwinded, informal—and a very efficient coverage of just the most important topics of undergraduate algebra. Think of it as a slimmed down D/F. “No field theory” is certainly an exaggeration; the exposition there is quite brief, and the restriction to fields of characteristic zero obscures the fact that much of the theory presented, including the Galois theory, is the theory of separablefield extensions, but even so, this is still the book I open first to remind myself about the Galois theory I'm supposed to know. The last main chapter of the book is quite lengthy and treats linear algebra and canonical forms in detail, which is one of the book's strongest features. Also, there are many supplementary topics—maybe Herstein really doesn't like field theory, since he inserts a section on the transcendence of e early on in his field theory chapter as something of a breather—but there's lots of good stuff to warm the heart of someone who likes to see his algebra applied to actual stuff, especially number-theoretic stuff; the famed Two and Four Squares Theorems are both proved in here!
Artin, AlgebraArtin's book is a nontraditional approach to undergraduate algebra, emphasizing concrete computational examples heavily throughout. Accordingly, linear algebra and matrix groups occupy the first part of the book, and the traditional group-ring-field troika comes later. This approach has the advantage of providing many nontrivial examples of the general theories, but you may not want to wait that long to get there. Supposed to be well written, though I haven't read it thoroughly.


雷达卡



京公网安备 11010802022788号







