楼主: 纳税879
593 0

[英文文献] Poisson Autoregression [推广有奖]

  • 0关注
  • 0粉丝

等待验证会员

学前班

0%

还不是VIP/贵宾

-

威望
0
论坛币
0 个
通用积分
0
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
10 点
帖子
0
精华
0
在线时间
0 小时
注册时间
2020-9-19
最后登录
2020-9-19

楼主
纳税879 发表于 2004-10-3 23:29:58 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
英文文献:Poisson Autoregression
英文文献作者:Konstantinos Fokianos,Anders Rahbek,Dag Tj?stheim
英文文献摘要:
This paper considers geometric ergodicity and likelihood based inference for linear and nonlinear Poisson autoregressions. In the linear case the conditional mean is linked linearly to its past values as well as the observed values of the Poisson process. This also applies to the conditional variance, making an interpretation as an integer valued GARCH process possible. In a nonlinear conditional Poisson model, the conditional mean is a nonlinear function of its past values and a nonlinear function of past observations. As a particular example an exponential autoregressive Poisson model for time series is considered. Under geometric ergodicity the maximum likelihood estimators of the parameters are shown to be asymptotically Gaussian in the linear model. In addition we provide a consistent estimator of their asymptotic covariance matrix. Our approach to verifying geometric ergodicity proceeds via Markov theory and irreducibility. Finding transparent conditions for proving ergodicity turns out to be a delicate problem in the original model formulation. This problem is circumvented by allowing a perturbation of the model. We show that as the perturbations can be chosen to be arbitrarily small, the differences between the perturbed and non-perturbed versions vanish as far as the asymptotic distribution of the parameter estimates is concerned.
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝


您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-29 04:27