|
還有, 看不懂的是"每次输了都买从A元开始输了多少元的两倍。"
如果是這樣, 那你應該是 A, 2A(=(A*2)), 6A(=(A+2A)*2), 18A, etc.
而不是A,2A,3A,6A...
最後, 如果我沒搞錯的話, 你就是那些behaviorial finance 所說的人
i) gambler's fallacy: given you lose this game, you think you are less likely to lose the next one; but the two games are independent, so the losing probability keeps the same
-> given you lose your last game, the expected earning of your last game is still 0, if p=0.5, and negative if p<0.5
ii) focus on gains/losses, not final wealth
iii) convex utility in the negative region: people are risk-adverse in gains, but risk-seeking in losses. They think it is not worthwhile to gamble more (if you have 1 million, you are not quite likely to take out half of them for an outcome of either 0 or 2 million); but if you have lost money, you think you should gamble, because at most you lose all your remaining money, which may not be much, but you enjoy a big upward potential.
嘛...有錯請指教了
我認為最荒謬的其實是
i) "资本的问题:首先个人要有足量的本金,因为在赢一局前都是输,递加下去就会有一笔很大的现金流支出,没有现金的支持是不能保证方法的运行"
ii) "赌局中途不能中断:如果庄家赢了前后关门的话,就断绝了买家回笼资金的路了"
- 如果沒有資本問題, 你一定是擁有無限財富, 還賭甚麼
- 為什麼莊家不能關門, 而你贏了則可以離開呢?
- 結果, 如果大家都不離開, 那麼資金便一直都在遊戲裡, 還要是無限資金......
(不要介意我打繁體字和英文好了)
|