- 老师,我用VAR DCC garch写了一下,希望您帮我看一下是否正确
- [code]library(rmgarch)
- library(rugarch)
- data<-read.table("final_data.txt",head=T,sep="\t")
- X = as.matrix(data[,2:5])
- variance.model=list(model="fGARCH",garchOrder=c(1,1),submodel="GARCH",external.regressors= NULL );
- mean.model=list(include.mean=F,arfima=F,external.regressors= NULL );
- # univariate spec for 4 variables
- uspec = multispec( replicate(4, ugarchspec(variance.model=variance.model,mean.mode=mean.model,distribution.model="norm") ) )
- # multivariate spec. VAR with 1 lag...(The robust version is slower but
- # uses a least trimmed squares procedure (see the references).
- mspec = dccspec(uspec, VAR = TRUE, lag = 1, lag.max = NULL, lag.criterion = c("AIC", "HQ", "SC",
- "FPE"), external.regressors = NULL, robust.control = list(gamma = 0.25,
- delta = 0.01, nc = 10, ns = 500), dccOrder = c(1, 1), distribution ="mvnorm")
- fit = dccfit(spec = mspec, X)
这个是出的结果
*---------------------------------*
* DCC GARCH Fit *
*---------------------------------*
Distribution : mvnorm
Model : DCC(1,1)
No. Parameters : 40
[VAR GARCH DCC UncQ] : [20+12+2+6]
No. Series : 4
No. Obs. : 1230
Log-Likelihood : 8826.14
Av.Log-Likelihood : 7.18
Optimal Parameters
-----------------------------------
Estimate Std. Error t value Pr(>|t|)
[LIBOR.Spread].omega 0.000012 0.000023 0.49779 0.618630
[LIBOR.Spread].alpha1 0.311304 0.111911 2.78172 0.005407
[LIBOR.Spread].beta1 0.687696 0.189478 3.62941 0.000284
[ABCP.Spread].omega 0.000020 0.000011 1.77008 0.076714
[ABCP.Spread].alpha1 0.151828 0.033463 4.53719 0.000006
[ABCP.Spread].beta1 0.847171 0.034853 24.30730 0.000000
[SPX.Return].omega 0.000001 0.000001 0.76251 0.445756
[SPX.Return].alpha1 0.050717 0.014621 3.46882 0.000523
[SPX.Return].beta1 0.941685 0.026818 35.11420 0.000000
[CDS].omega 0.013797 0.006312 2.18578 0.028832
[CDS].alpha1 0.213871 0.044104 4.84925 0.000001
[CDS].beta1 0.785129 0.046411 16.91694 0.000000
[Joint]dcca1 0.007344 0.005529 1.32832 0.184073
[Joint]dccb1 0.936553 0.020565 45.54039 0.000000
Information Criteria
---------------------
Akaike -14.286
Bayes -14.120
Shibata -14.288
Hannan-Quinn -14.224
Elapsed time : 14.30482
对于这个结果我有些疑问,显示的alpha和beta就是各个unigarch对应的参数吗?还有就是如果我要进一步想做出两两相关的动态相关系数的图,应该如何操作,我看dccfit里没有其他的value,如何显示这些相关系数呢?希望老师能给予回答,谢谢


雷达卡
京公网安备 11010802022788号







