楼主: delphy_crystal
1163 0

Andrew W.Lo: Pricing and Hedging Derivative Securities Learning Networks [推广有奖]

  • 0关注
  • 5粉丝

已卖:92份资源

讲师

16%

还不是VIP/贵宾

-

威望
0
论坛币
157 个
通用积分
6.7480
学术水平
3 点
热心指数
4 点
信用等级
4 点
经验
17779 点
帖子
226
精华
0
在线时间
335 小时
注册时间
2010-2-7
最后登录
2022-10-31

楼主
delphy_crystal 发表于 2013-5-18 00:13:45 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
A Nonparametric Approach to Pricing and Hedging Derivative Securities Via Learni.pdf (550.84 KB)

We propose a nonparametric method for estimating the pricing formula of a derivative asset using learning networks. Although not a substitute for the more traditional arbitrage-based pricing formulas, network pricing formulas may be more accurate and computationally more efficient alternatives when the underlying asset's price dynamics are unknown, or when the pricing equation associated with no-arbitrage condition cannot be solved analytically. To assess the potential value of network pricing formulas, we simulate Black-Scholes option prices and show that learning networks can recover the Black-Scholes formula from a two-year training set of daily options prices, and that the resulting network formula can be used successfully to both price and delta-hedge options out-of-sample. For comparison, we estimate models using four popular methods: ordinary least squares, radial basis function networks, multilayer perceptron networks, and projection pursuit. To illustrate the practical relevance of our network pricing approach, we apply it to the pricing and delta-hedging of S&P 500 futures options from 1987 to 1991.
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Derivative Securities Networks Learning earning substitute efficient potential learning equation

本帖被以下文库推荐

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jr
拉您进交流群
GMT+8, 2025-12-9 10:21