- clear
- webuse lutkepohl2
- local cst = 1
- foreach var of varlist dln_* {
- foreach var2 of varlist dln_* {
- if "`var'"!="`var2'" {
- forvalues l = 2/4 {
- qui constraint define `cst' [`var']L`l'.`var2'=0
- local cst = `cst' + 1
- }
- }
- }
- }
- local cst = `cst' - 1
- var dln_* , lags(1/4) constraints(1/`cst') noconst nolog nocnsr dfk
会得到如下结果(片段)
- Vector autoregression
- Sample: 1961q2 - 1982q4 No. of obs = 87
- Log likelihood = 718.8549 AIC = -15.69781
- FPE = 8.22e-15 HQIC = -15.28694
- Det(Sigma_ml) = 5.43e-15 SBIC = -14.67744
- Equation Parms RMSE R-sq chi2 P>chi2
- ----------------------------------------------------------------
- dln_inv 6 .040702 0.2602 32.96132 0.0000
- dln_inc 6 .011574 0.7309 216.9137 0.0000
- dln_consump 6 .010116 0.7765 281.5507 0.0000
- ----------------------------------------------------------------
- ------------------------------------------------------------------------------
- | Coef. Std. Err. z P>|z| [95% Conf. Interval]
- -------------+----------------------------------------------------------------
- dln_inv |
- dln_inv |
- L1. | -.2560271 .1068026 -2.40 0.017 -.4653565 -.0466978
- L2. | -.0943709 .1001138 -0.94 0.346 -.2905902 .1018485
- L3. | .132162 .1024238 1.29 0.197 -.0685848 .3329089
- L4. | .3332071 .0969018 3.44 0.001 .1432832 .5231311
- |
- dln_inc |
- L1. | .5480063 .4270637 1.28 0.199 -.2890232 1.385036
- L2. | 7.29e-16 9.19e-16 0.79 0.427 -1.07e-15 2.53e-15
- L3. | 6.79e-16 1.00e-15 0.68 0.498 -1.28e-15 2.64e-15
- L4. | 5.80e-16 7.27e-16 0.80 0.425 -8.44e-16 2.00e-15
- |
- dln_consump |
- L1. | .151961 .4609499 0.33 0.742 -.7514842 1.055406
- L2. | -9.06e-16 1.07e-15 -0.85 0.395 -2.99e-15 1.18e-15
- L3. | -6.40e-16 4.33e-16 -1.48 0.139 -1.49e-15 2.09e-16
- L4. | -2.19e-16 2.74e-16 -0.80 0.424 -7.55e-16 3.18e-16
- -------------+----------------------------------------------------------------
如果在这之后,执行如下程序
- var dln_* , lags(1/2) constraints(1) noconst nolog nocnsr dfk
得到的结果是(部分)
- ------------------------------------------------------------------------------
- | Coef. Std. Err. z P>|z| [95% Conf. Interval]
- -------------+----------------------------------------------------------------
- dln_inv |
- dln_inv |
- L1. | -.2609283 .1121212 -2.33 0.020 -.4806818 -.0411748
- L2. | -.1281462 .1125114 -1.14 0.255 -.3486646 .0923721
- |
- dln_inc |
- L1. | .2585417 .4842804 0.53 0.593 -.6906304 1.207714
- L2. | 0 (omitted)
- |
- dln_consump |
- L1. | .5359288 .4605129 1.16 0.245 -.3666599 1.438517
- L2. | .5078876 .3796774 1.34 0.181 -.2362664 1.252042
- -------------+----------------------------------------------------------------
问题1:如果要估计上述第一个模型,即,每个式子的右边LHS变量有4个滞后项而其它变量只有1个滞后项,除了像我这样使用constraint之外,有什么简便的办法吗?
问题2:使用同样的数据和constraint,上述第一个模型的估计结果中,被限制的系数会有很小的值,例如L2.dln_inc在dln_inv式子里的系数是7.29e-16。但是在第二个模型里,会直接显示0 (omitted)。请问为什么会有这种现象?这种现象是否表示什么地方出现了错误?


雷达卡




京公网安备 11010802022788号







