| VEC模型的方程怎么看?输出结果的CointEq1代表什么? VEC模型中的误差修正项ut-1 的系数怎么看啊? 谢谢了!!!!!
Vector Error Correction Estimates | ||
| Date: | ||
| Sample (adjusted): 1985 2003 | ||
| Included observations: 19 after adjustments | ||
| Standard errors in ( ) & t-statistics in [ ] | ||
|
|
|
|
|
|
|
|
| Cointegrating Eq: | CointEq1 |
|
|
|
|
|
|
|
|
|
| LNRGDP(-1) | 1.000000 |
|
|
|
|
|
| LNRSI(-1) | -0.933811 |
|
|
| (0.02194) |
|
|
| [-42.5709] |
|
|
|
|
|
| C | -1.248291 |
|
|
|
|
|
|
|
|
|
| Error Correction: | D(LNRGDP) | D(LNRSI) |
|
|
|
|
|
|
|
|
| CointEq1 | 0.147170 | 1.073478 |
|
| (0.20192) | (0.38033) |
|
| [ 0.72885] | [ 2.82247] |
|
|
|
|
| D(LNRGDP(-1)) | 0.480517 | 2.689093 |
|
| (0.45121) | (0.84989) |
|
| [ 1.06494] | [ 3.16404] |
|
|
|
|
| D(LNRGDP(-2)) | -0.197200 | 1.310575 |
|
| (0.53726) | (1.01196) |
|
| [-0.36705] | [ 1.29508] |
|
|
|
|
| D(LNRGDP(-3)) | 0.349277 | 1.720365 |
|
| (0.51883) | (0.97726) |
|
| [ 0.67320] | [ 1.76040] |
|
|
|
|
| D(LNRSI(-1)) | -0.048476 | -0.190899 |
|
| (0.14456) | (0.27229) |
|
| [-0.33534] | [-0.70110] |
|
|
|
|
| D(LNRSI(-2)) | 0.119156 | 0.217968 |
|
| (0.13131) | (0.24733) |
|
| [ 0.90745] | [ 0.88129] |
|
|
|
|
| D(LNRSI(-3)) | -0.110608 | -0.396294 |
|
| (0.12112) | (0.22815) |
|
| [-0.91317] | [-1.73701] |
|
|
|
|
| C | 0.047939 | -0.499690 |
|
| (0.12129) | (0.22845) |
|
| [ 0.39526] | [-2.18730] |
|
|
|
|
|
|
|
|
| R-squared | 0.295498 | 0.799870 |
| Adj. R-squared | -0.152821 | 0.672515 |
| Sum sq. resids | 0.030061 | 0.106652 |
| S.E. equation | 0.052276 | 0.098466 |
| F-statistic | 0.659124 | 6.280629 |
| Log likelihood | 34.30533 | 22.27512 |
| Akaike AIC | -2.768982 | -1.502645 |
| | -2.371324 | -1.104986 |
| Mean dependent | 0.117530 | 0.131302 |
| S.D. dependent | 0.048688 | 0.172065 |
|
|
|
|
|
|
|
|
| Determinant resid covariance (dof adj.) | 7.04E-06 | |
| Determinant resid covariance | 2.36E-06 | |
| Log likelihood | 69.16629 | |
| Akaike information criterion | -5.385925 | |
| Schwarz criterion | -4.491194 | |
|
|
|
|
|
|
|
|


雷达卡






京公网安备 11010802022788号







