楼主: SMULEE
972 1

[问答] 小仙求助各位大神! [推广有奖]

  • 5关注
  • 0粉丝

本科生

43%

还不是VIP/贵宾

-

威望
0
论坛币
3 个
通用积分
0
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
501 点
帖子
49
精华
0
在线时间
111 小时
注册时间
2012-10-4
最后登录
2024-2-23

楼主
SMULEE 发表于 2013-10-26 22:26:30 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
谁能帮忙找找异常值处理方法,以及检验方法最权威的临界值表? 急用,谢谢各位大神了!

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:处理方法 最权威的 检验方法 临界值表 最权威

沙发
胖胖小龟宝 发表于 2015-1-28 14:26:32
(1)直接将该条观测删除
在SPSS软件里有2种不同的删除方法,整条删除和成对删除。
当然,这种方法简单易行,但缺点也很明显,首先我们经常会遇到的情况是观测值很少,这种删除会造成样本量不足,其次,直接删除的观测很多,也可能会改变变量的原有分布,从而造成统计模型不够稳定。
   (2)暂且保留,待结合整体模型综合分析
    通常我们观测到的异常值,有时在对于整个模型而言,其异常性质并没有观测到的明显,因此最好综合分析一下,像回归分析,我们经常利用残差分布信息来判断模型优劣,残差有没有超出经验范围(+3标准差),呈现什么分布等,另外对于整个模型而言,会有一些指标像Mahalanobis、Cook's、协方差比率等可以提供某条观测或整体的拟合信息,这些指标也会提示分析人员的异常值信息。如果对于整个模型而言,并不是很明显时,建议保留。
   (3)如果样本量很小,可以考虑使用均值或其他统计量取代
这不失为一种折中的方法,大部分的参数方法是针对均值来建模的,用均值取代,实际上克服了丢失样本的缺陷,但却丢失了样本“特色”,可以说是不大不小的错误。当然如果是时序数据,用于取代的统计量,可供选择的范围就会多一些,可以针对序列选择合适的统计量取代异常值,也较少存在上述问题。
   (4)将其视为缺失值,利用统计模型填补
该方法的好处是可以利用现有变量的信息,对异常值(缺失值)填补。不过这里最好要视该异常值(缺失值)的特点而定,例如需视是完全随机缺失、随机缺失还是非随机缺失的不同情况而定。
   (5)不做过多处理,根据其性质特点,使用稳健模型加以修饰
如果按参数性质分的话,可以将稳健方法分为参数、非参和半参3种情况,这大致与通常的关于参数的假设、优点一样,请参见:
   (6)使用抽样技术或模拟技术,接受更合理的标准误等信息

https://bbs.pinggu.org/thread-2163478-1-1.html

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2025-12-24 12:07