楼主: 信管628
226 0

[英文文献] Global Optimization issues in Supervised Learning. An overview [推广有奖]

  • 0关注
  • 0粉丝

等待验证会员

学前班

0%

还不是VIP/贵宾

-

威望
0
论坛币
0 个
通用积分
0
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
10 点
帖子
0
精华
0
在线时间
0 小时
注册时间
2020-9-19
最后登录
2020-9-19

楼主
信管628 发表于 2005-6-14 21:27:02 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
英文文献:Global Optimization issues in Supervised Learning. An overview
英文文献作者:Laura Palagi
英文文献摘要:
The paper presents an overview of global issues in optimization methods for Supervised Learning (SL). We focus on Feedforward Neural Networks with the aim of reviewing global methods specifically devised for the class of continuous unconstrained optimization problems arising both in Multi Layer Perceptron/Deep Networks and in Radial Basis Networks. We first recall the learning optimization paradigm for FNN and we briefly discuss global scheme for the joined choice of the network topologies and of the network parameters. The main part of the paper focus on the core subproblem which is the unconstrained regularized weight optimization problem. We review some recent results on the existence of local-non global solutions of the unconstrained nonlinear problem and the role of determining a global solution in a Machine Learning paradigm. Local algorithms that are widespread used to solve the continuous unconstrained problems are addressed with focus on possible improvements to exploit the global properties. Hybrid global methods specifically devised for SL optimization problems which embed local algorithms are discussed at the end.
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝


您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-29 13:57