楼主: xxka917
1380 4

Statistical Inference for Discrete Time Stochastic Processes [推广有奖]

  • 3关注
  • 5粉丝

已卖:3127份资源

讲师

36%

还不是VIP/贵宾

-

威望
0
论坛币
30450 个
通用积分
1242.3224
学术水平
69 点
热心指数
82 点
信用等级
64 点
经验
9155 点
帖子
244
精华
0
在线时间
594 小时
注册时间
2008-7-26
最后登录
2025-7-17

楼主
xxka917 发表于 2013-12-15 13:07:41 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
(SpringerBriefs in Statistics ) M. B. Rajarshi (auth.)-Statistical Inference fo.pdf (1.1 MB, 需要: 20 个论坛币)


(SpringerBriefs in Statistics )
M. B. Rajarshi  (auth.)-
Statistical Inference for Discrete Time Stochastic Processes
-Springer India (2013)
ISSN 2191-544X ISSN 2191-5458 (electronic)
ISBN 978-81-322-0762-7 ISBN 978-81-322-0763-4 (eBook)
DOI 10.1007/978-81-322-0763-4
Springer New Delhi Heidelberg New York Dordrecht London
Library of Congress Control Number: 2012949564
? The Author(s) 2012
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must always
be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.
Printed on acid-free paper
Springer is part of Springer Science+Business Media (www.springer.com)
Contents
1 CAN Estimators from Dependent Observations. . . . . . . . . . . . . . . 1
1.1 Preliminaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Martingales. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Mixing Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Empirical Processes of Dependent Observations . . . . . . . . . . . . 9
1.5 CAN Estimation Under Cramér and Other
Regularity Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2 Markov Chains and Their Extensions. . . . . . . . . . . . . . . . . . . . . . 19
2.1 Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Parametric Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3 Extensions of Markov Chain Models . . . . . . . . . . . . . . . . . . . . 29
2.4 Hidden Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.5 Aggregate Data from Finite Markov Chains . . . . . . . . . . . . . . . 36
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3 Non-Gaussian ARMA Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.1 Integer Valued Non-Negative Auto-Regressive Models . . . . . . . 39
3.2 Auto-Regressive Models for Continuous Random Variables . . . . 41
3.3 Processes Obtained by Minification . . . . . . . . . . . . . . . . . . . . . 44
3.4 Product AR Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5 More General Non-Gaussian Sequences . . . . . . . . . . . . . . . . . . 46
3.6 Goodness-of-Fit Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . 50
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4 Estimating Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.1 Conditional Least Square Estimation . . . . . . . . . . . . . . . . . . . . 55
4.2 Optimal Estimating Functions . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3 Estimating Functions for Stochastic Models . . . . . . . . . . . . . . . 61
ix
4.4 Estimating Functions for a Vector Parameter . . . . . . . . . . . . . . 65
4.5 Confidence Intervals Based on Estimating Functions . . . . . . . . . 69
4.6 Combining Correlated Estimating Functions . . . . . . . . . . . . . . . 71
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5 Estimation of Joint Densities and Conditional Expectation . . . . . . 77
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2 Main Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6 Bootstrap and Other Resampling Procedures . . . . . . . . . . . . . . . . 85
6.1 Efron’s Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2 Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3 Markov Sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.4 Bootstrap for Stationary and Invertible ARMA Series . . . . . . . . 91
6.5 AR-Sieve Bootstrap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.6 Block-Based Bootstraps for Stationary Sequences . . . . . . . . . . . 95
6.7 Other Block-Based Sample Reuse Methods
for Stationary Observations. . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.8 Resampling Based on Estimating Functions . . . . . . . . . . . . . . . 106
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Statistical statistica Stochastic statistic Inference electronic copyright whether whole

已有 1 人评分学术水平 热心指数 信用等级 收起 理由
tyui11 + 1 + 1 + 1 热心帮助其他会员

总评分: 学术水平 + 1  热心指数 + 1  信用等级 + 1   查看全部评分

沙发
Enthuse(未真实交易用户) 发表于 2013-12-16 05:38:43
谢谢分享!

藤椅
gssdzc(未真实交易用户) 在职认证  发表于 2013-12-16 12:57:59
thanks a lot

板凳
wngbaq(真实交易用户) 发表于 2014-2-27 14:07:57
thanks a lot!
心慈行孝,何需努力看经;意恶损人,空读如来一藏.

报纸
tyui11(未真实交易用户) 发表于 2014-3-25 22:29:14
谢谢分享

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2025-12-26 16:19