楼主: xuehe
2048 0

[学科前沿] Machine Learning Course Materials [推广有奖]

贵宾

已卖:14807份资源

学术权威

87%

还不是VIP/贵宾

-

威望
8
论坛币
577224 个
通用积分
483.2562
学术水平
370 点
热心指数
366 点
信用等级
207 点
经验
356065 点
帖子
4313
精华
8
在线时间
2646 小时
注册时间
2004-12-31
最后登录
2025-12-16

楼主
xuehe 发表于 2014-1-16 13:05:24 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

CS 229
Machine Learning
Course Materials


Handouts and Problem Sets

Lecture Notes

Section Notes

Other resources


Advice on applying machine learning: Slides from Andrew's lecture on getting machine learning algorithms to work in practice can be found here.
Previous projects: A list of last year's final projects can be found here.
Matlab resources: Here are a couple of Matlab tutorials that you might find helpful: http://www.math.ufl.edu/help/matlab-tutorial/ and http://www.math.mtu.edu/~msgocken/intro/node1.html. For emacs users only: If you plan to run Matlab in emacs, here are matlab.el, and a helpful .emac's file.
Octave resources: For a free alternative to Matlab, check out GNU Octave. The official documentation is available here. Some useful tutorials on Octave include http://en.wikibooks.org/wiki/Octave_Programming_Tutorial and http://www-mdp.eng.cam.ac.uk/web/CD/engapps/octave/octavetut.pdf .
Data: Here is the UCI Machine learning repository, which contains a large collection of standard datasets for testing learning algorithms. If you want to see examples of recent work in machine learning, start by taking a look at the conferences NIPS (all old NIPS papers are online) and ICML. Some other related conferences include UAI, AAAI, IJCAI. Viewing PostScript and PDF files: Depending on the computer you are using, you may be able to download a PostScript viewer or PDF viewer for it if you don't already have one.


Comments to cs229-qa@cs.stanford.edu

Home Page



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Materials Learning material earning machine

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2026-1-2 17:50