楼主: xbytfrgw
2027 1

Spatial Statistics and Spatio-Temporal Data电子书,真正PDF文字版 [推广有奖]

  • 0关注
  • 0粉丝

已卖:38份资源

学前班

60%

还不是VIP/贵宾

-

威望
0
论坛币
748 个
通用积分
0.2256
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
50 点
帖子
1
精华
0
在线时间
2 小时
注册时间
2010-8-14
最后登录
2023-10-14

楼主
xbytfrgw 发表于 2014-2-2 12:49:13 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
如题:Spatial Statistics and Spatio-Temporal Data电子书,真正PDF文字版,需要的同学请下载。

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Statistics statistic temporal Statist Spatial 电子书

沙发
Lisrelchen(未真实交易用户) 发表于 2014-2-3 23:45:13
Spatial Statistics and Spatio-Temporal Data: Covariance Functions and Directional PropertiesMichael Sherman
ISBN: 978-0-470-69958-4
294 pages
November 2010
Description
In the spatial or spatio-temporal context, specifying the correct covariance function is fundamental to obtain efficient predictions, and to understand the underlying physical process of interest. This book focuses on covariance and variogram functions, their role in prediction, and appropriate choice of these functions in applications. Both recent and more established methods are illustrated to assess many common assumptions on these functions, such as, isotropy, separability, symmetry, and intrinsic correlation.

After an extensive introduction to spatial methodology, the book details the effects of common covariance assumptions and addresses methods to assess the appropriateness of such assumptions for various data structures.

Key features:

  • An extensive introduction to spatial methodology including a survey of spatial covariance functions and their use in spatial prediction (kriging) is given.
  • Explores methodology for assessing the appropriateness of assumptions on covariance functions in the spatial, spatio-temporal, multivariate spatial, and point pattern settings.
  • Provides illustrations of all methods based on data and simulation experiments to demonstrate all methodology and guide to proper usage of all methods.
  • Presents a brief survey of spatial and spatio-temporal models, highlighting the Gaussian case and the binary data setting, along with the different methodologies for estimation and model fitting for these two data structures.
  • Discusses models that allow for anisotropic and nonseparable behaviour in covariance functions in the spatial, spatio-temporal and multivariate settings.





您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2026-1-16 09:30