楼主: lzguo99
876 3

[文献] Lower Bounds for Ramsey Numbers of Kn with a Small Subgraph Removed [推广有奖]

  • 0关注
  • 0粉丝

教授

45%

还不是VIP/贵宾

-

威望
0
论坛币
2 个
通用积分
13.8454
学术水平
2 点
热心指数
2 点
信用等级
2 点
经验
2386 点
帖子
712
精华
0
在线时间
516 小时
注册时间
2010-2-15
最后登录
2025-7-31

楼主
lzguo99 发表于 2014-2-18 23:01:56 |AI写论文
1论坛币
【作者(必填)】Ye Wang Yusheng Li

【文题(必填)】Lower Bounds for Ramsey Numbers of Kn with a Small Subgraph Removed

【年份(必填)】2012

【全文链接或数据库名称(选填)】http://www.sciencedirect.com/sci ... i/S0166218X12001680

最佳答案

gongshundaren 查看完整内容

只能传压缩后的文件,下载后自己解压
关键词:removed Numbers Number Bounds REMOVE 数据库

回帖推荐

gongshundaren 发表于2楼  查看完整内容

只能传压缩后的文件,下载后自己解压
sat(n, C6)

沙发
gongshundaren 发表于 2014-2-18 23:01:57
只能传压缩后的文件,下载后自己解压
附件: 你需要登录才可以下载或查看附件。没有帐号?我要注册
已有 1 人评分学术水平 热心指数 信用等级 收起 理由
lzguo99 + 1 + 1 + 1 热心帮助其他会员

总评分: 学术水平 + 1  热心指数 + 1  信用等级 + 1   查看全部评分

藤椅
lzguo99 发表于 2014-2-19 00:03:41
帮帮忙,现在不在学校。多谢!
sat(n, C6)

板凳
gongshundaren 发表于 2014-2-19 00:08:55

Lower bounds for Ramsey numbers of Kn with a smallsubgraph removed✩Ye Wang∗, Yusheng LiDepartment of Mathematics, Tongji University, Shanghai 200092, China

1. Introduction
For graphs H1 and H2, the Ramsey number r(H1, H2) is defined to be the smallest N such that any red–blue edge-coloring
of KN contains either a red H1 or a blue H2. We write r(H) for r(H, H).
Let F be a graph of order at most n, size at most n − 2 without isolated vertex. Denote Kn − F a graph obtained from Kn
by deleting edges of a copy of F . Let e be an edge, mP2m independent edges, and P3 a path on three vertices. It is known that
r(K4 − e) = 10 in [1] and r(K5 − e) = 22 in [2]. More results on r(Kn − e) can be found in [4]. We focus on r(Kn − F ) for
some small F in this note.
If the removed subgraph is F = P3, then we have a trivial relation r(Kn − P3) ≥ r(Kn−1). If F = 2P2, the trivial bound is
r(Kn − 2P2) ≥ r(Kn−2), which is much weaker.
We shall use Paley graphs Qp, which is defined in the next section, to give a lower bound for r(Kn −F ), where F is a small
graph

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-21 20:51