楼主: Shazam
1995 1

Cross-level interactions without random slope in a hierarchical linear model? [推广有奖]

  • 0关注
  • 2粉丝

已卖:147份资源

硕士生

40%

还不是VIP/贵宾

-

TA的文库  其他...

C++

Culture(文化学)

C#(Newoccidental)

威望
0
论坛币
1847 个
通用积分
2.0750
学术水平
6 点
热心指数
6 点
信用等级
5 点
经验
1118 点
帖子
144
精华
0
在线时间
4 小时
注册时间
2006-5-10
最后登录
2016-12-4

楼主
Shazam 发表于 2014-4-17 03:46:08 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
I have a HLM model with significant variance in the level 1 intercepts across groups but no significant variance in the level 1 slopes across groups and find significant cross-level moderation effects. Does it make sense to interpret these or are random slopes a necessary condition for probing cross-level interaction effects?
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:interactions Hierarchical interaction interact without necessary interpret without across groups

沙发
Shazam 发表于 2014-4-17 03:46:41
Having random slopes at level 1 is not a necessary condition for examining cross-level interactions. All that is necessary is that you have 2 predictors that vary at different levels, and their interaction.

EDIT: I looked over the Hofmann paper posted in the comments and I think I see the source of confusion here.

Hofmann describes a situation in which one is building a model by starting with the simplest "empty" random-intercept model, and then working up term-by-term to the full HLM, where the very last term added is the predictor representing the cross-level interaction. Under such an approach, it is true that in the model prior to the cross-level interaction model (i.e., the model that is identical except that the cross-level interaction term is omitted), there must be variation in the level-1 slopes in order for there to be moderation of these slopes by a level-2 predictor. Intuitively, if every group has the same exact level-1 slope, then it is not possible for us to predict variation in these slopes from another predictor in the dataset, because there is no such variation to predict.

Notice that this is not a statement about the cross-level interaction model itself, but rather a statement about a different model which omits the cross-level interaction term. In the cross-level interaction model itself, it is entirely possible for there to be no variation in the level-1 slopes. This would essentially mean that all of the seemingly random variation in the level-1 slopes that we observed in the previous model can be accounted for by adding the cross-level interaction term to the model.

I illustrate just such a situation below with some simulated data in R, where we have a cross-level interaction between x varying at level 1, and z varying at level 2:

# generate data -----------------------------------------------------------

set.seed(12345)
dat <- merge(data.frame(group=rep(1:30,each=30),
                        x=runif(900, min=-.5, max=.5),
                        error=rnorm(900)),
             data.frame(group=1:30,
                        z=runif(30, min=-.5, max=.5),
                        randInt=rnorm(30)))
dat <- within(dat, y <- randInt + 5*x*z + error)

# Model with the x:z interaction ------------------------------------------

library(lme4)

mod1 <- lmer(y ~ x*z + (1|group) + (0+x|group), data=dat)
mod1
# Linear mixed model fit by REML
# Formula: y ~ x * z + (1 | group) + (0 + x | group)
# Data: dat
# AIC  BIC logLik deviance REMLdev
# 2658 2692  -1322     2640    2644
# Random effects:
#   Groups   Name        Variance   Std.Dev.  
# group    (Intercept) 8.5326e-01 9.2372e-01
# group    x           5.4449e-20 2.3334e-10
# Residual             9.9055e-01 9.9526e-01
# Number of obs: 900, groups: group, 30
#
# Fixed effects:
#             Estimate Std. Error t value
# (Intercept) -0.13311    0.17283  -0.770
# x            0.09808    0.11902   0.824
# z           -0.24705    0.51424  -0.480
# x:z          5.39969    0.35257  15.315
#
# Correlation of Fixed Effects:
#     (Intr) x      z     
# x   -0.010              
# z    0.103  0.008      
# x:z  0.007  0.137 -0.005

# Model without the x:z interaction ---------------------------------------

mod2 <- lmer(y ~ x + z + (1|group) + (0+x|group), data=dat)
mod2
# Linear mixed model fit by REML
# Formula: y ~ x + z + (1 | group) + (0 + x | group)
# Data: dat
# AIC  BIC logLik deviance REMLdev
# 2726 2755  -1357     2713    2714
# Random effects:
#   Groups   Name        Variance Std.Dev.
# group    (Intercept) 0.85503  0.92468
# group    x           3.46811  1.86229
# Residual             0.99607  0.99803
# Number of obs: 900, groups: group, 30
#
# Fixed effects:
#             Estimate Std. Error t value
# (Intercept) -0.14148    0.17312  -0.817
# x           -0.05178    0.36056  -0.144
# z           -0.26570    0.51509  -0.516
#
# Correlation of Fixed Effects:
#     (Intr) x     
# x -0.004      
# z  0.103  0.002
Jack Westfall


您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2026-1-25 08:02