楼主: nieqiang110
6571 17

[书籍介绍] Practical Data Science with R-2014 [推广有奖]

已卖:5518份资源

学术权威

60%

还不是VIP/贵宾

-

威望
0
论坛币
96459 个
通用积分
808.4880
学术水平
293 点
热心指数
351 点
信用等级
207 点
经验
7620 点
帖子
4801
精华
0
在线时间
5994 小时
注册时间
2007-7-26
最后登录
2025-12-26

楼主
nieqiang110 学生认证  发表于 2014-5-8 18:55:30 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

Practical Data Science with R-2014.rar (7.8 MB, 需要: 10 个论坛币) 本附件包括:
  • Practical Data Science with R-2014.pdf
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Data Science Practical practic Science SCIE

已有 6 人评分经验 学术水平 热心指数 信用等级 收起 理由
ReneeBK + 60 + 5 + 5 精彩帖子
ltx5151 + 20 根据规定进行奖励
bird830703 + 5 + 5 + 5 精彩帖子
dxystata + 50 + 1 + 1 精彩帖子
Lisrelchen + 100 + 5 + 5 + 5 精彩帖子
Nicolle + 5 + 5 + 5 精彩帖子

总评分: 经验 + 230  学术水平 + 21  热心指数 + 21  信用等级 + 15   查看全部评分

本帖被以下文库推荐

沙发
voodoo(真实交易用户) 发表于 2014-5-8 20:33:01
帮楼主贴下此书的TOC:


Contents
--------------------------------------------------------------------------------
foreword
preface
acknowledgments
about this book
about the cover
illustration


Part 1 Introduction to data science
Chapter 1 The data science process
The roles in a data science project
Stages of a data
science project
Setting expectations
Summary

Chapter 2 Loading data into R
Working with data from files
Working with relational databases
Summary

Chapter 3 Exploring data
Using summary statistics to spot problems
Spotting problems using graphics and visualization
Summary

Chapter 4 Managing data
Cleaning data
Sampling for modeling and validation
Summary

Part 2 Modeling methods
Chapter 5 Choosing and evaluating models
Mapping problems to machine learning tasks
Evaluating  models
Validating models
Summary


Chapter 6 Memorization methods
KDD and KDD Cup 2009
Building single-variable models
Building models using many variables
Summary

Chapter 7 Linear and logistic regression
Using linear regression
Using logistic regression
Summary

Chapter 8 Unsupervised methods
Cluster analysis
Association rules
Summary

Chapter 9 Exploring advanced methods
Using bagging and random forests to reduce training variance
Using generalized additive models (GAMs) to learn non-monotone relationships
Using kernel methods to increase data separation
Using SVMs to model complicated decision boundaries
Summary

Part 3 Delivering results
Chapter 10 Documentation and deployment
The buzz dataset
Using knitr to produce milestone documentation
Using comments and version control for running documentation
Deploying models
Summary

Chapter 11 Producing effective presentations
Presenting your results to the project sponsor
Presenting your model to end users
Presenting your work to other data scientists
Summary

appendix A Working with R and other tools
appendix B Important statistical concepts
appendix C More tools and ideas worth exploring
bibliography
index



巫毒上传,必属佳品!
坛友下载,三思后行!

藤椅
qoiqpwqr(真实交易用户) 发表于 2014-5-9 00:38:39
每次看楼主的帖子都被周星驰晃得头晕。

板凳
xiaoL(真实交易用户) 发表于 2014-5-9 08:06:18
Me 2!~
路漫漫其修远兮。吾将上下而求索!

报纸
北极维尼熊(未真实交易用户) 发表于 2014-5-9 08:52:53
springer出版的书么?

地板
bird830703(真实交易用户) 发表于 2014-5-9 17:51:33
曼宁社,好书。学习了
嗯哼哼

7
frances2008(真实交易用户) 发表于 2014-5-10 04:03:22
pdf文件打不开啊。

8
nieqiang110(未真实交易用户) 学生认证  发表于 2014-5-10 07:59:39
可以打开的,没问题

9
yhw1234(真实交易用户) 学生认证  发表于 2014-5-13 08:31:40

Practical Data Science with R

Nina Zumel and John Mount
Foreword by Jim Porzak

10
miaji(未真实交易用户) 发表于 2014-5-17 01:44:44
多谢楼主分享!

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群
GMT+8, 2026-1-1 19:20