楼主: shenyingshizhe
4675 3

[统计软件] [提问]两个不同正态总体的样本混在一起,如何推测两分布的特征 [推广有奖]

  • 0关注
  • 0粉丝

初中生

23%

还不是VIP/贵宾

-

威望
0
论坛币
91 个
通用积分
0
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
293 点
帖子
3
精华
0
在线时间
20 小时
注册时间
2014-5-16
最后登录
2016-5-19

楼主
shenyingshizhe 在职认证  发表于 2014-5-16 16:40:59 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
第一次发帖,有纰漏的话见谅。

现在假设有两个正态总体,他们一个均值和标准差分别是mu1,sigma1,mu2,sigma2
从两个总体中抽取若干个样本,然后混在一起。那么,怎么从现在这个混合样本的特征,去推断两个总体的特征?
也就是求一下mu1,sigma1,mu2,sigma2?

大神们还请不吝赐教。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:在一起 Sigma 第一次发帖 GMA MA1 如何 样本

回帖推荐

mannlee 发表于3楼  查看完整内容

To be added,w can be treated as a random variable, which generally follows Binomial (or Bernoulli) distribution w/ parameter pi. But we cannot observe w. In practice, w is replaced with its conditional mean, i.e., E(w|y;mu,sigma,pi) = Prob(w=1|y;mu,sigma,pi) = pi*f(y;mu1,sigma1)/. In the EM algorithm, the parameters relevant to y (mu and sigma) are estimated first; then pi is estimated. This proc ...

沙发
mannlee 发表于 2014-5-27 12:31:21
To be added,w can be treated as a random variable, which generally follows Binomial (or Bernoulli) distribution w/ parameter pi. But we cannot observe w. In practice, w is replaced with its conditional mean, i.e., E(w|y;mu,sigma,pi) = Prob(w=1|y;mu,sigma,pi) = pi*f(y;mu1,sigma1)/[pi*f(y;mu1,sigma1)+(1-pi)*f(y;mu2,sigma2)]. In the EM algorithm, the parameters relevant to y (mu and sigma) are estimated first; then pi is estimated. This procedure is repeated until convergence condition is satisfied.

藤椅
mannlee 发表于 2014-5-27 07:06:02
This case involves incomplete data. One strategy is to introduce an indicator vector w, where w_i = 1 if obs i belongs to population 1 and w_i = 0 otherwise; prob(w=1)=pi.
Then write the joint density distribution of (y_i, w_i), for example, f(y,w;mu,sigma,pi)=pi*f(y;mu1,sigma1)+(1-pi)*f(y;mu2,sigma2), as well as the corresponding log-likelihood function. Estimate the LL function using Expectation-Maximization (EM) Algorithm.
You can find the details of EM estimation from statistical/econometric textbooks.
已有 1 人评分论坛币 收起 理由
admin_kefu + 50 热心帮助其他会员

总评分: 论坛币 + 50   查看全部评分

板凳
shenyingshizhe 在职认证  发表于 2014-6-4 08:10:16
mannlee 发表于 2014-5-27 07:06
This case involves incomplete data. One strategy is to introduce an indicator vector w, where w_i =  ...
谢谢,很有启发~

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-1 16:34