楼主: ReneeBK
1994 3

[精彩WinBUGS答问]What should we do when we do not know distribution [推广有奖]

  • 1关注
  • 62粉丝

VIP

已卖:4897份资源

学术权威

14%

还不是VIP/贵宾

-

TA的文库  其他...

R资源总汇

Panel Data Analysis

Experimental Design

威望
1
论坛币
49635 个
通用积分
55.6937
学术水平
370 点
热心指数
273 点
信用等级
335 点
经验
57805 点
帖子
4005
精华
21
在线时间
582 小时
注册时间
2005-5-8
最后登录
2023-11-26

楼主
ReneeBK 发表于 2014-6-16 01:47:27 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
What happens when you don't have an idea of the parameters distribution? What approach should we use?

Most of the time we aim to undersatnd if a certain variable has any influence over the presence/absence of a certain species, and the variable is accepted or not according to the variable importance. This means that most of the times we are not thinking on the expetcted distribution a parameter should have.

Is it correct to assume that all parameters follow a normal distribution, when all i know is that b1,b2,b3 and b4 should vary between -2 and 2, and b0 can vary between -5 and 5 ?

model {
    # N observations
    for (i in 1:N) {
        species ~ dbern(p)
        logit(p) <- b0 + b1*var1 + b2*var2 +
            b3*var3 + b4*var4
    }
    # Priors
    b0     ~ dnorm(0,10)
    b1   ~ dnorm(0,10)
    b2 ~ dnorm(0,10)
    b3  ~ dnorm(0,10)
    b4  ~ dnorm(0,10)
}
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:distribution winbugs WINBUG Should Istr presence correct follow normal should

沙发
ReneeBK 发表于 2014-6-16 02:40:48

up vote
6
down vote
accepted
Parameters in linear predictor are t-distributed. When the number of records goes to infinity, it converges to normal distribution. So yes, normally it is considered correct to assume normal distribution of parameters.

Anyways, in bayesian statistics, you need not to assume parameter distribution. Normally you specify so called uninformative priors. For each case, different uninformative priors are recommended. In this case, people often use something like (you can tweak the values of course):

dunif(-100000, 100000)
or

dnorm(0, 1/10^10)
The second one is preferred, because it is not limited to particular values. With uninformative priors, you have take no risk. You can of course limit them to particular interval, but be careful.

So, you specify uninformative prior and the parameter distribution will come out itself! No need to make any assumptions about it.

藤椅
ReneeBK 发表于 2014-6-16 02:41:32
Unfortunately, harmless seeming priors can be very dangerous (and have even fooled some seasoned Bayesians).

This recent paper, provides a nice introduction along with plotting methods to visualize the prior and posterior (usually marginal priors/posterior for the parameter(s) of interest).

Hidden Dangers of Specifying Noninformative Priors. John W. Seaman III, John W. Seaman Jr. & James D. Stamey The American StatisticianVolume 66, Issue 2, May 2012, pages 77-84. http://amstat.tandfonline.com/doi/full/10.1080/00031305.2012.695938

Such plots in my opinion should be obligatory in any actual Bayesian analysis, even if the analyst does not need them – what is happening in a Bayesian analysis should be made clear for most readers.

板凳
lonestone 在职认证  发表于 2017-2-25 07:49:54 来自手机
ReneeBK 发表于 2014-6-16 01:47
What happens when you don't have an idea of the parameters distribution? What approach should we use ...
谢谢你

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2025-12-26 22:39