如果是单个时间序列,以arima模型为例,可以直接建模预测:
- val = ts(val,start=c(2011,1), end=c(2013,12),frequency=12)
- #forecast包进行预测测
- library(forecast)
- #ARIMA模型,auto.arima
- ##########################################
- fit = auto.arima(val)
- forecast = forecast(fit,12)
但是,如果有分组变量呢?以下面数据为例:
- date yy zb_id val
- 201208 a 214 100
- 201209 a 214 60
- 201210 a 214 92
- 201211 a 214 80.39
- 201212 a 214 89.29
- 201301 a 214 94.44
- 201302 a 214 87.18
- 201303 a 214 89.47
- 201304 a 214 94.74
- 201305 a 214 94.05
- 201306 a 214 90
- 201307 a 214 95.38
- 201308 a 214 92.95
- 201309 a 214 96.67
- 201310 a 214 92.44
- 201311 a 214 93.42
- 201312 a 214 87.9
- 201401 a 214 93.98
- 201402 a 214 88.46
- 201403 a 214 87.63
- 201404 a 214 81.4
- 201405 a 214 70.98
- 201208 a 301 4474.84
- 201209 a 301 3646.79
- 201210 a 301 4220.74
- 201211 a 301 4377.37
- 201212 a 301 4844.28
- 201301 a 301 5373.75
- 201302 a 301 4933.65
- 201303 a 301 5366.28
- 201304 a 301 5487.85
- 201305 a 301 5807.58
- 201306 a 301 5850.19
- 201307 a 301 6185.69
- 201308 a 301 5560.34
- 201309 a 301 5295.14
- 201310 a 301 5820.49
- 201311 a 301 5739.83
- 201312 a 301 6504.39
- 201401 a 301 6734.42
- 201402 a 301 6618.1
- 201403 a 301 7497.88
- 201404 a 301 6942.31
- 201405 a 301 6867.31



雷达卡



京公网安备 11010802022788号







