楼主: zeyinz
2940 0

Neural Networks in Finance:Gaining Predictive Edge in the Market  关闭 [推广有奖]

  • 0关注
  • 1粉丝

已卖:1876份资源

博士生

63%

还不是VIP/贵宾

-

威望
0
论坛币
37357 个
通用积分
3.5454
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
11432 点
帖子
206
精华
0
在线时间
271 小时
注册时间
2007-8-7
最后登录
2025-10-18

楼主
zeyinz 发表于 2008-4-29 05:57:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

209024.pdf (3.5 MB, 需要: 40 个论坛币)


金融经典,好东西,物有所值。

NeuralNetworks
inFinance:
Gaining
PredictiveEdge
intheMarket
PaulD.McNelis

Contents
Prefacexi
1Introduction1
1.1Forecasting,Classi?cation,andDimensionality
Reduction ..........................1
1.2Synergies ...........................4
1.3TheInterfaceProblems ...................6
1.4PlanoftheBook ......................8
IEconometricFoundations11
2WhatAreNeuralNetworks?13
2.1LinearRegressionModel ..................13
2.2GARCHNonlinearModels .................15
2.2.1PolynomialApproximation .............17
2.2.2OrthogonalPolynomials ...............18
2.3ModelTypology .......................20
2.4WhatIsANeuralNetwork? ................21
2.4.1FeedforwardNetworks ................21
2.4.2SquasherFunctions .................24
2.4.3RadialBasisFunctions ...............28
2.4.4RidgeletNetworks ..................29
2.4.5JumpConnections ..................30
2.4.6MultilayeredFeedforwardNetworks ........32

2.4.7RecurrentNetworks .................34
2.4.8NetworkswithMultipleOutputs ..........36
2.5NeuralNetworkSmooth-TransitionRegimeSwitching
Models ............................38
2.5.1Smooth-TransitionRegimeSwitchingModels...38
2.5.2NeuralNetworkExtensions .............39
2.6NonlinearPrincipalComponents:Intrinsic
Dimensionality ........................41
2.6.1LinearPrincipalComponents ............42
2.6.2NonlinearPrincipalComponents ..........44
2.6.3ApplicationtoAssetPricing ............46
2.7NeuralNetworksandDiscreteChoice ...........49
2.7.1DiscriminantAnalysis ................49
2.7.2LogitRegression ...................50
2.7.3ProbitRegression ..................51
2.7.4WeibullRegression .................52
2.7.5NeuralNetworkModelsforDiscreteChoice ....52
2.7.6ModelswithMultinomialOrderedChoice .....53
2.8TheBlackBoxCriticismandDataMining ........55
2.9Conclusion ..........................57
2.9.1MATLABProgramNotes ..............58
2.9.2SuggestedExercises .................58
3EstimationofaNetworkwithEvolutionaryComputation59
3.1DataPreprocessing .....................59
3.1.1Stationarity:Dickey-FullerTest ...........59
3.1.2SeasonalAdjustment:CorrectionforCalendar
E?ects ........................61
3.1.3DataScaling .....................64
3.2TheNonlinearEstimationProblem ............65
3.2.1LocalGradient-BasedSearch:TheQuasi-Newton
MethodandBackpropagation ...........67
3.2.2StochasticSearch:SimulatedAnnealing ......70
3.2.3EvolutionaryStochasticSearch:TheGenetic
Algorithm ......................72
3.2.4EvolutionaryGeneticAlgorithms ..........75
3.2.5Hybridization:CouplingGradient-Descent,
Stochastic,andGeneticSearchMethods ......75
3.3RepeatedEstimationandThickModels ..........77
3.4MATLABExamples:NumericalOptimizationand
NetworkPerformance ....................78
3.4.1NumericalOptimization ...............78
3.4.2ApproximationwithPolynomialsand
NeuralNetworks ...................80

Contentsvii
3.5Conclusion ..........................83
3.5.1MATLABProgramNotes ..............83
3.5.2SuggestedExercises .................84
4EvaluationofNetworkEstimation85
4.1In-SampleCriteria ......................85
4.1.1GoodnessofFitMeasure ..............86
4.1.2Hannan-QuinnInformationCriterion .......86
4.1.3SerialIndependence:Ljung-BoxandMcLeod-Li
Tests .........................86
4.1.4Symmetry ......................89
4.1.5Normality ......................89
4.1.6NeuralNetworkTestforNeglectedNonlinearity:
Lee-White-GrangerTest ..............90
4.1.7Brock-Deckert-ScheinkmanTestforNonlinear
Patterns .......................91
4.1.8SummaryofIn-SampleCriteria ...........93
4.1.9MATLABExample .................93
4.2Out-of-SampleCriteria ...................94
4.2.1RecursiveMethodology ...............95
4.2.2RootMeanSquaredErrorStatistic .........96
4.2.3Diebold-MarianoTestforOut-of-SampleErrors..96
4.2.4Harvey,Leybourne,andNewboldSizeCorrection
ofDiebold-MarianoTest ..............97
4.2.5Out-of-SampleComparisonwithNestedModels..98
4.2.6SuccessRatioforSignPredictions:Directional
Accuracy .......................99
4.2.7PredictiveStochasticComplexity ..........100
4.2.8Cross-Validationandthe.632Bootstrapping
Method ........................101
4.2.9DataRequirements:HowLargeforPredictive
Accuracy? ......................102
4.3InterpretiveCriteriaandSigni?canceofResults ......104
4.3.1AnalyticDerivatives .................105
4.3.2FiniteDi?erences ..................106
4.3.3DoesItMatter? ...................107
4.3.4MATLABExample:AnalyticandFinite
Di?erences ......................107
4.3.5BootstrappingforAssessingSigni?cance ......108
4.4ImplementationStrategy ..................109
4.5Conclusion ..........................110
4.5.1MATLABProgramNotes ..............110
4.5.2SuggestedExercises .................111

viiiContents
IIApplicationsandExamples113
5EstimatingandForecastingwithArti?cialData115
5.1Introduction .........................115
5.2StochasticChaosModel ...................117
5.2.1In-SamplePerformance ...............118
5.2.2Out-of-SamplePerformance .............120
5.3StochasticVolatility/JumpDi?usionModel ........122
5.3.1In-SamplePerformance ...............123
5.3.2Out-of-SamplePerformance .............125
5.4TheMarkovRegimeSwitchingModel ...........125
5.4.1In-SamplePerformance ...............128
5.4.2Out-of-SamplePerformance .............130
5.5VolatalityRegimeSwitchingModel ............130
5.5.1In-SamplePerformance ...............132
5.5.2Out-of-SamplePerformance .............132
5.6DistortedLong-MemoryModel ...............135
5.6.1In-SamplePerformance ...............136
5.6.2Out-of-SamplePerformance .............137
5.7Black-SholesOptionPricingModel:ImpliedVolatility
Forecasting ..........................137
5.7.1In-SamplePerformance ...............140
5.7.2Out-of-SamplePerformance .............142
5.8Conclusion ..........................142
5.8.1MATLABProgramNotes ..............142
5.8.2SuggestedExercises .................143
6TimesSeries:ExamplesfromIndustryandFinance145
6.1ForecastingProductionintheAutomotiveIndustry...145
6.1.1TheData .......................146
6.1.2ModelsofQuantityAdjustment ..........148
6.1.3In-SamplePerformance ...............150
6.1.4Out-of-SamplePerformance .............151
6.1.5InterpretationofResults ..............152
6.2CorporateBonds:WhichFactorsDeterminethe
Spreads? ...........................156
6.2.1TheData .......................157
6.2.2AModelfortheAdjustmentofSpreads ......157
6.2.3In-SamplePerformance ...............160
6.2.4Out-of-SamplePerformance .............160
6.2.5InterpretationofResults ..............161

Contentsix
6.3Conclusion ..........................165
6.3.1MATLABProgramNotes ..............166
6.3.2SuggestedExercises .................166
7In?ationandDe?ation:HongKongandJapan167
7.1HongKong ..........................168
7.1.1TheData .......................169
7.1.2ModelSpeci?cation .................174
7.1.3In-SamplePerformance ...............177
7.1.4Out-of-SamplePerformance .............177
7.1.5InterpretationofResults ..............178
7.2Japan ............................182
7.2.1TheData .......................184
7.2.2ModelSpeci?cation .................189
7.2.3In-SamplePerformance ...............189
7.2.4Out-of-SamplePerformance .............190
7.2.5InterpretationofResults ..............191
7.3Conclusion ..........................196
7.3.1MATLABProgramNotes ..............196
7.3.2SuggestedExercises .................196
8Classi?cation:CreditCardDefaultandBankFailures199
8.1CreditCardRisk ......................200
8.1.1TheData .......................200
8.1.2In-SamplePerformance ...............200
8.1.3Out-of-SamplePerformance .............202
8.1.4InterpretationofResults ..............203
8.2BankingIntervention ....................204
8.2.1TheData .......................204
8.2.2In-SamplePerformance ...............205
8.2.3Out-of-SamplePerformance .............207
8.2.4InterpretationofResults ..............208
8.3Conclusion ..........................209
8.3.1MATLABProgramNotes ..............210
8.3.2SuggestedExercises .................210
9DimensionalityReductionandImpliedVolatility
Forecasting211
9.1HongKong ..........................212
9.1.1TheData .......................212
9.1.2In-SamplePerformance ...............213
9.1.3Out-of-SamplePerformance .............214

xContents
9.2UnitedStates ........................216
9.2.1TheData .......................216
9.2.2In-SamplePerformance ...............216
9.2.3Out-of-SamplePerformance .............218
9.3Conclusion ..........................219
9.3.1MATLABProgramNotes ..............220
9.3.2SuggestedExercises .................220
Bibliography221
Index233

[此贴子已经被作者于2008-5-1 8:09:08编辑过]

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Predictive Networks Gaining predict Finance Finance Networks market Edge Gaining

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jr
拉您进交流群
GMT+8, 2026-1-19 12:44