15825 106

[精品图书]Statistics for Bioengineering Sciences   [推广有奖]

  • 0关注
  • 10粉丝

已卖:1625份资源

教授

8%

还不是VIP/贵宾

-

TA的文库  其他...

Must-Read Book

Winrats NewOccidental

Matlab NewOccidental

威望
1
论坛币
31504 个
通用积分
4.4911
学术水平
96 点
热心指数
43 点
信用等级
79 点
经验
9658 点
帖子
287
精华
10
在线时间
40 小时
注册时间
2013-12-14
最后登录
2024-4-12

楼主
农村固定观察点 发表于 2014-7-3 00:19:59 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币


Statistics for Bioengineering Sciences: With MATLAB and WinBUGS Support


Brani Vidakovi



Editorial ReviewsThrough its scope and depth of coverage, this book addresses the needs of the vibrant and rapidly growing engineering fields, bioengineering and biomedical engineering, while implementing software that engineers are familiar with.
The author integrates introductory statistics for engineers and  introductory biostatistics as a single textbook heavily oriented to computation and hands on approaches. For example, topics ranging from the aspects of disease and device testing, Sensitivity, Specificity and ROC curves, Epidemiological Risk Theory, Survival Analysis, or Logistic and Poisson Regressions are covered.
In addition to the synergy of engineering and biostatistical approaches, the novelty of this book is in the substantial coverage of Bayesian approaches to statistical inference. Many examples in this text are solved using both the traditional and Bayesian methods, and the results are compared and commented.
http://springer.bme.gatech.edu/index.html


Product Details
  • Hardcover: 769 pages
  • Publisher: Springer; 2011 edition (August 31, 2011)

本帖隐藏的内容

Statistics for Bioengineering Sciences.pdf (13.24 MB, 需要: 25 个论坛币)



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Engineering engineerin Statistics statistic Engineer software familiar growing single

已有 2 人评分经验 学术水平 热心指数 信用等级 收起 理由
zl89 + 20 精彩帖子
狂热的爱好者 + 60 + 3 + 3 + 3 精彩帖子

总评分: 经验 + 80  学术水平 + 3  热心指数 + 3  信用等级 + 3   查看全部评分

本帖被以下文库推荐

沙发
狂热的爱好者(未真实交易用户) 学生认证  发表于 2014-7-3 00:25:27
  1. close all
  2. clear all

  3. ImmPeroxNeg=[...
  4. 19, 25, 30, 34, 37, 46, 47, 51, 56, 57, 61, 66, 67, 74, 78, 86,...
  5. 122, 123, 130, 130, 133, 134, 136, 141, 143, 148, 151, 152,...
  6. 153, 154, 156, 162, 164, 165, 182, 189];
  7. CensorIPN=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,...
  8.   1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1];

  9. ImmPeroxPos =[...
  10. 22, 23, 38, 42, 73, 77, 89, 115, 144];
  11. CensorIPP=[0,0,0,0,0,0,0,0,1];

  12. %number of observed (non-censored)
  13. k1 = sum(1-CensorIPN)   %16
  14. k2 = sum(1-CensorIPP)   %8

  15. % MLE estimators of rate lambda for 2 samples.
  16. hatlam1 = k1/sum(ImmPeroxNeg)  %0.0042
  17. hatlam2 = k2/sum(ImmPeroxPos)  %0.0128


  18. varlam1 = k1/(sum(ImmPeroxNeg))^2  %0.0042
  19. varlam2 = k2/(sum(ImmPeroxPos))^2  %0.0128

  20. z0975 = norminv(0.975);
  21. [hatlam1 - z0975*sqrt(varlam1), hatlam1 + z0975*sqrt(varlam1)]

  22. exp([log(hatlam1) - z0975*sqrt(1/k1) log(hatlam1) + z0975*sqrt(1/k1)])


  23. [reclambdahat1 lamci1] = mle(ImmPeroxNeg, ...
  24.    'distribution','exponential','censoring',CensorIPN)  
  25.    % 237.6250
  26.    % 153.6769  415.7289
  27. [reclambdahat2 lamci2] = mle(ImmPeroxPos, ...
  28.    'distribution','exponential','censoring',CensorIPP)
  29.    % 77.8750
  30.    % 43.1959   180.3793
  31. %(MATLAB parametrization) scale to rate
  32. lambdahat1 = 1/reclambdahat1  %0.0042
  33. lambdahat2 = 1/reclambdahat2  %0.0128

  34. z = (log(hatlam1) - log(hatlam2))/sqrt(1/k1 + 1/k2)  %-2.5763
  35. p = normcdf(z)  %0.0050

  36. z0975 = norminv(0.975);
  37. [hatlam1 - z0975*sqrt(varlam1), hatlam1 + z0975*sqrt(varlam1)]
  38.   %0.0021    0.0063
  39.   
  40. [hatlam1 - z0975* hatlam1/sqrt(k1), hatlam1 + z0975* hatlam1/sqrt(k1)]
  41.   %0.0021    0.0063
  42.   
  43.   
  44. exp([log(lambdahat1) - z0975*sqrt(1/k1) ...
  45.       log(lambdahat1) + z0975*sqrt(1/k1)])  
  46.   %0.0026    0.0069
  47. 1./lamci1 %0.0024 0.0065
  48.    
复制代码

藤椅
songlinjl(未真实交易用户) 发表于 2014-7-3 00:34:02 来自手机
  1. % Muenchow flower (waiting time) data
  2. % female is a 1x47 vector of waiting times
  3. % cen is a 1x47 vector or censor indicators
  4. % flowers is a 47x2 vector
  5. % s0 = kaplan meier estimate
  6. female=[1 2 4 4 5 6 7 7 8 8 8 9 14 15 18 18 19 23 23 26 28 29 29 29 30 32 35 35 37 39 43 56 57 59 67 71 75 75 78 81 90 94 96 96 100 102 105];
  7. censor=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 1 1];
  8. cen=1-censor;
  9. flowers=[female',cen'];
  10. % [ff xx vv]=KMcdfSM(female',cen',1);
  11. %  plot(xx, ff)
  12. kmplot([female',cen'])
复制代码

板凳
michaelkuo8818(真实交易用户) 发表于 2014-7-3 01:12:08
  1. % Muenchow flower (waiting time) data
  2. % female is a 1x47 vector of waiting times
  3. % cen is a 1x47 vector or censor indicators
  4. % flowers is a 47x2 vector
  5. % s0 = kaplan meier estimate
  6. female=[1 2 4 4 5 6 7 7 8 8 8 9 14 15 18 18 19 23 23 26 28 29 29 29 30 32 35 35 37 39 43 56 57 59 67 71 75 75 78 81 90 94 96 96 100 102 105];
  7. censor=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 1 1];

  8. flowers=[female',censor'];
  9. %s0=KMcdfSM(female',cen',1);  
  10. kmplot(flowers)
  11. print -depsc 'C:\Springer\Survival\Survivaleps\muenchow.eps'
复制代码

报纸
侯monkey(未真实交易用户) 发表于 2014-7-3 01:20:21
  1. Winsorized mean. A robust location measure that preserves sample size
  2. is the winsorized mean. Similarly to a trimmed mean, a winsorized mean identifies
  3. outlying observations, but instead of trimming them the observations are
  4. replaced by either the minimum or maximum of the trimmed sample, depending
  5. on if the trimming is done from below or above (Fig. 2.3c).
  6. The winsorized mean is not a built-in MATLAB function. However, it can
  7. be calculated easily by the following code:
  8. alpha=20;
  9. sa = sort(car);
  10. sa(1:floor( n*alpha/200 )) = sa(floor( n*alpha/200 ) + 1);
  11. sa(end-floor( n*alpha/200 ):end) = ...
  12. sa(end-floor( n*alpha/200 ) - 1);
  13. winsmean = mean(sa) % winsmean = 21.9632
复制代码

地板
txt999(真实交易用户) 发表于 2014-7-3 01:49:36
看看,谢谢楼主

7
tmdxyz(未真实交易用户) 发表于 2014-7-3 03:28:48
Statistics for Bioengineering Sciences With Matlab and WinBUGS Support_Brani Vidakovic 2011.

8
oyjy1986(未真实交易用户) 在职认证  发表于 2014-7-3 04:33:54
take a look

9
zhxq716(未真实交易用户) 发表于 2014-7-3 06:05:46
thank you very much

10
line_us(未真实交易用户) 发表于 2014-7-3 06:41:15
The author integrates introductory statistics for engineers and  introductory biostatistics as a single textbook heavily oriented to computation and hands on approaches.

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2026-1-7 21:06