楼主: glclare
1256 0

R code [推广有奖]

  • 0关注
  • 0粉丝

已卖:6份资源

高中生

10%

还不是VIP/贵宾

-

威望
0
论坛币
60 个
通用积分
1.0000
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
193 点
帖子
14
精华
0
在线时间
27 小时
注册时间
2010-12-3
最后登录
2024-10-15

楼主
glclare 发表于 2014-9-14 10:08:38 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
1. Download from Quandl the quarterly S&P 500 Index ranging from 1988.Q1 to 2013.Q4.
2. Divide the series into the in-sample estimation window (observations up to and includ-
ing 2009.Q4) and the out-of-sample forecasting window (observations beginning from
2010.Q1 and onwards).
3. Produce the point and the interval forecasts using the simple exponential smoothing,
the Holt's linear trend, and the Holt-Winters additive seasonal models. Plot the three
graphs.
4. Estimate the rst-order autoregression, i.e. AR(1) process, and calculate the uncondi-
tional mean and the unconditional variance measures.
5. Produce the point and the interval forecasts from the estimated autoregression. Plot
the graph.
6. Within the rolling forecasting environment, generate one-step-ahead forecasts through-
out the out-of-sample set using the considered four models.
7. Calculate aand report the out-of-sample mean absolute error (MAE) and root mean
squared error (RMSE) measures. Which model is preferred?

初学R  第六步第七步的code 完全没有思路。可否给些指点?谢谢啦!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:code COD ODE observations Forecasting simple beginning generate Download seasonal

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2025-12-24 20:36