楼主: silence915
12515 13

[回归分析求助] [求助]stata中mixed logit model的结果解读 [推广有奖]

  • 0关注
  • 1粉丝

初中生

19%

还不是VIP/贵宾

-

威望
0
论坛币
36 个
通用积分
0
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
154 点
帖子
16
精华
0
在线时间
0 小时
注册时间
2006-11-4
最后登录
2008-7-4

楼主
silence915 发表于 2008-6-24 16:08:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
<p>请教大家一下,stata哪个版本可以处理mixed logit model?如何操作呢?</p><p>以前没用过stata,恳请高人指点,不胜感激!!!</p>

[此贴子已经被作者于2008-6-25 21:43:46编辑过]

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Stata logit Mixed model mode 不胜感激 如何

沙发
蓝色 发表于 2008-6-24 16:20:00

stata10里面有  xtmelogit

Title

    [XT] xtmelogit -- Multilevel mixed-effects logistic regression


Syntax

        xtmelogit depvar [fe_equation] || re_equation [|| re_equation ...] [, options]

    and where the syntax of fe_equation is

            indepvars [if] [in] [, fe_options]

    and the syntax of re_equation is one of:

        for random coefficients

            levelvar: [varlist] [, re_options]

        for a random effect among the levels of a factor variable

            levelvar: R.varname [, re_options]

    where levelvar is the grouping variable for the random effects at that level, or _all for the inclusive group
    comprising all observations.

    fe_options                      description
    --------------------------------------------------------------------------------------------------------------
    Model
      noconstant                    suppress the constant from the fixed-effects equation
      offset(varname)               include varname in model with coefficient constrained to 1
    --------------------------------------------------------------------------------------------------------------

    re_options                      description
    --------------------------------------------------------------------------------------------------------------
    Model
      covariance(vartype)           variance-covariance structure of the random effects
      noconstant                    suppress the constant from the random-effects equation
      collinear                     keep collinear variables
    --------------------------------------------------------------------------------------------------------------

    options                         description
    --------------------------------------------------------------------------------------------------------------
    Model
      binomial(varname|#)           set binomial trials if data are in binomial form

    Integration
      laplace                       use Laplacian approximation; equivalent to intpoints(1)
      intpoints(# [# ...])          set the number of integration (quadrature) points; default is 7

    Reporting
      level(#)                      set confidence level; default is level(95)
      or                            report fixed-effects coefficients as odds ratios
      variance                      show random-effects parameter estimates as variances and covariances
      noretable                     suppress random-effects table
      nofetable                     suppress fixed-effects table
      estmetric                     show parameter estimates in the estimation metric
      noheader                      suppress output header
      nogroup                       suppress table summarizing groups
      nolrtest                      do not perform LR test comparing to logistic regression

    Max options
      maximize_options              control the maximization process during gradient-based optimization; seldom
                                      used
      retolerance(#)                tolerance for random-effects estimates; default is retolerance(1e-8); seldom
                                      used
      reiterate(#)                  maximum number of iterations for random-effects estimation; default is
                                      reiterate(50); seldom used
      matlog                        parameterize variance components using matrix logarithms
      refineopts(maximize_options)  control the maximization process during refinement of starting values
    --------------------------------------------------------------------------------------------------------------

    vartype                  description
    --------------------------------------------------------------------------------------------------------------
    independent              one variance parameter per random effect, all covariances zero; the default unless a
                               factor variable is specified
    exchangeable             equal variances for random effects, and one common pairwise covariance
    identity                 equal variances for random effects, all covariances zero; the default for factor
                               variables
    unstructured             all variances-covariances distinctly estimated
    --------------------------------------------------------------------------------------------------------------
    indepvars and varlist may contain time-series operators; see tsvarlist.
    bootstrap, by, jackknife, rolling, statsby, and xi are allowed; see prefix.
    See [XT] xtmelogit postestimation for features available after estimation.


Description

    xtmelogit fits mixed-effects models for binary/binomial responses.  Mixed models contain both fixed effects
    and random effects.  The fixed effects are analogous to standard regression coefficients and are estimated
    directly.  The random effects are not directly estimated (although they may be obtained postestimation) but
    are summarized according to their estimated variances and covariances.  Random effects may take the form of
    either random intercepts or random coefficients, and the grouping structure of the data may consist of
    multiple levels of nested groups.  The distribution of the random effects is assumed to be Gaussian.  The
    conditional distribution of the response given the random effects is assumed to be Bernoulli, with success
    probability determined by the logistic cumulative distribution function (c.d.f.).  Since the log likelihood
    for this model has no closed form, it is approximated by adaptive Gaussian quadrature.

已有 1 人评分论坛币 热心指数 收起 理由
crystal8832 + 10 + 1 补偿

总评分: 论坛币 + 10  热心指数 + 1   查看全部评分

藤椅
silence915 发表于 2008-6-24 16:28:00

感谢你的帮助!不过好像不是这个模型,有人建议在stata10里面用

net search mixlogit

net install mixlogit

但之后我就不知道怎么操作了

板凳
蓝色 发表于 2008-6-24 16:49:00

安装完看帮助

里面一般是有例子的

报纸
silence915 发表于 2008-6-25 15:36:00

十分感谢!

在你的帮助之下我已经把模型做出来了,不过不懂看结果,不知道怎么样的标准表示这个模型好,望指点!

地板
蓝色 发表于 2008-6-25 17:30:00
以下是引用silence915在2008-6-25 15:36:00的发言:

十分感谢!

在你的帮助之下我已经把模型做出来了,不过不懂看结果,不知道怎么样的标准表示这个模型好,望指点!

不懂看结果,可能是你对理论不了解

软件只是实现理论的一个工具。

你去看看相关的理论的书。

7
silence915 发表于 2008-6-25 21:43:00

问题已解决:) 

[此贴子已经被作者于2008-7-4 16:52:26编辑过]

8
myq9861 发表于 2008-6-25 23:22:00

我也在做一个和你类似的模型,我做的是分组的Logit,也是用多层次的logit

但是在用net install mixlogit出现如下结果,请问怎样才能装上这个命令模块

 net install mixlogit
file http://www.stata.com/mixlogit.pkg not found
server says file temporarily redirected to http://www.stata.com/error/404.html
could not load mixlogit.pkg from http://www.stata.com/
r(601);

9
silence915 发表于 2008-7-1 23:31:00
有没有哪位高人指点一下怎么比较这2个模型啊?

10
kkwei 发表于 2008-7-2 08:56:00
我就奇怪了……怎么模型自己都不知道就拿来用……发表论文来吓唬人吖……真不晓得现在中国发表的那些论文方法看起来都听起来都很深奥的,发表论文的作者自己懂不懂还是问题……比如什么HLM很多人现在开始用,但是明白的看一看数就知道这种方法的前提假设很多,很多经济与管理的数据根本满足不了这些前提假设,很多论文还是发表出来了。有意义么?!SEM也是……搞学术不是图新鲜……方法是实现问题的手段不是拿来发表论文的资本……好的论文应该是有好的思想,而不是找一个深奥的数学方法……

[此贴子已经被作者于2008-7-2 8:59:35编辑过]

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2025-12-29 08:39