|
Function: y = (p1+p3*x^0.5+p5*x+p7*x^1.5)/(1+p2*x^0.5+p4*x+p6*x^1.5+p8*x^2)
Algorithms: 麦夸特法(Levenberg-Marquardt) + 通用全局优化法
Root of Mean Square Error (RMSE): 9.41476574328692
Sum of Square Error (SSE): 12232.0183321337
Correlation Coef. (R): 0.963372027502907
R-Square: 0.928085663375062
Determination Coef. (DC): 0.928085207449982
Parameters Name Parameter Value
=============== ===============
p1 351.923096130021
p2 3.80534513261027
p3 -533.592361185479
p4 1.38986737066147
p5 196.967502456126
p6 -1.33634659885107
p7 -11.7557124806215
p8 0.202275857361891
======== 输出结果 =========
No. Observed Y Calculated Y
1 1 0.699945800134785
2 1 -3.19207154877179
3 1 1.85247193108049
4 2 8.55686815213504
5 6 16.9864711435598
6 31 27.2708008118729
7 31 39.4904532557058
8 84 53.5588436364577
9 83 69.0895558934251
10 57 85.2849658778312
11 96 100.924872458924
12 129 114.539495735012
13 114 124.76962705353
14 114 130.769273872458
15 153 132.429422552333
16 151 130.307351766598
17 91 125.344606931372
18 106 118.555979056283
19 162 110.818919146519
20 93 102.788519927132
21 90 94.9002108944277
22 101 87.4125995003857
23 67 80.4582313686463
24 68 74.0872244010771
25 77 68.2996535888877
26 51 63.0675791261431
27 48 58.3491459910859
28 51 54.0971665142266
29 30 50.264083273818
30 49 46.8046536380963
31 31 43.6772484288005
32 29 40.8443359170345
33 44 38.2725066649276
34 30 35.9322553784966
35 37 33.7976481766188
36 38 31.8459494350079
37 28 30.0572493626998
38 40 28.4141137124817
39 49 26.9012654268268
40 34 25.5053013897636
41 57 24.2144438173971
42 30 23.0183239612086
43 29 21.9077949775949
44 26 20.874770585391
45 16 19.9120862209499
46 21 19.0133796482115
47 18 18.1729882964085
48 22 17.3858609284365
49 13 16.6474815604455
50 11 15.9538038442325
51 13 15.3011943831044
52 12 14.6863836782919
53 22 14.1064235983784
54 28 13.5586504314214
55 4 13.0406527217292
56 11 12.5502432138816
57 12 12.0854343286082
58 7 11.6444166813178
59 15 11.2255402268229
60 5 10.8272976752318
61 6 10.4483098758588
62 7 10.0873129098684
63 3 9.74314666948463
64 10 9.41474473305785
65 5 9.1011253719695
66 8 8.80138354805089
67 3 8.51468377950674
68 6 8.24025376981148
69 5 7.97737870812265
70 4 7.48369149198854
71 4 7.25169373196641
72 6 7.02887187586452
73 9 6.8147315316175
74 5 6.60881189796239
75 14 6.41068303009176
76 10 6.21994336287421
77 1 6.03621746425778
78 4 5.85915399469639
79 1 5.68842385125033
80 5 5.5237184774651
81 5 5.36474832227806
82 7 5.21124143308181
83 3 5.06294216972117
84 1 4.91961002764929
85 5 4.78101855974295
86 4 4.6469543874006
87 3 4.51721629253816
88 3 4.3916143829746
89 2 4.26996932447493
90 3 4.15211163340659
91 1 3.92712580935434
92 1 3.71547449400903
93 2 3.61431320147451
94 1 3.51609600125529
95 1 3.42070663396409
96 1 3.32803466253964
97 3 3.23797512017485
98 2 3.06529886616616
99 1 2.98249673958486
100 6 2.74721211382808
101 3 2.67289668354818
102 2 2.53000194919706
103 5 2.46128956007885
104 2 2.39431666630154
105 2 2.32902383961904
106 1 2.2653542283837
107 2 2.20325342238847
108 1 2.14266932600384
109 3 2.0258537447165
110 1 1.91453265888741
111 1 1.80836135512105
112 3 1.70702232889121
113 1 1.61022270620683
114 2 1.51769194906353
115 1 1.22400085048562
116 2 1.18551988233738
117 1 1.11092540089865
118 1 1.07476872504383
119 2 1.03934489817235
120 1 0.904592895170962
121 1 0.872550045125675
122 10 0.841131088047225
123 2 0.810319924126116
124 2 0.780100979866589
125 1 0.721379963767772
126 1 0.664853209462074
127 1 0.583943669964012
128 1 0.482793827480943
129 1 0.434900668701533
130 1 0.279993851468248
131 1 0.239074666332694
132 1 0.219130894314949
133 1 0.0710113818113407
134 2 -0.0590806377996224
135 1 -0.16029668358769
136 1 -0.299293572750602
137 1 -0.732952883957409
138 1 -0.738772277584034
|