楼主: Mirror..
3106 14

[数据挖掘] 数据挖掘的10大分析方法 [推广有奖]

已卖:5份资源

院士

21%

还不是VIP/贵宾

-

威望
1
论坛币
67318 个
通用积分
10.4048
学术水平
502 点
热心指数
518 点
信用等级
460 点
经验
42800 点
帖子
2405
精华
2
在线时间
716 小时
注册时间
2014-11-10
最后登录
2019-4-21

初级学术勋章 初级热心勋章 中级学术勋章

楼主
Mirror.. 在职认证  发表于 2014-12-10 10:41:12 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

1.C4.5

C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法.C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进:

1)用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足;

2)在树构造过程中进行剪枝;

3)能够完成对连续属性的离散化处理;

4)能够对不完整数据进行处理。

C4.5算法有如下优点:产生的分类规则易于理解,准确率较高。其缺点是:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。

2.Thek-meansalgorithm即K-Means算法

k-meansalgorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k    3.Supportvectormachines

支持向量机,英文为SupportVectorMachine,简称SV机(论文中一般简称SVM)。它是一种监督式学习的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化。假定平行超平面间的距离或差距越大,分类器的总误差越小。一个极好的指南是C.J.CBurges的《模式识别支持向量机指南》。vanderWalt和Barnard将支持向量机和其他分类器进行了比较。

4.TheApriorialgorithm

Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。

5.最大期望(EM)算法

在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然估计的算法,其中概率模型依赖于无法观测的隐藏变量(LatentVariabl)。最大期望经常用在机器学习和计算机视觉的数据集聚(DataClustering)领域。

6.PageRank

PageRank是Google算法的重要内容。2001年9月被授予美国专利,专利人是Google创始人之一拉里·佩奇(LarryPage)。因此,PageRank里的page不是指网页,而是指佩奇,即这个等级方法是以佩奇来命名的。

PageRank根据网站的外部链接和内部链接的数量和质量俩衡量网站的价值。PageRank背后的概念是,每个到页面的链接都是对该页面的一次投票,被链接的越多,就意味着被其他网站投票越多。这个就是所谓的“链接流行度”——衡量多少人愿意将他们的网站和你的网站挂钩。PageRank这个概念引自学术中一篇论文的被引述的频度——即被别人引述的次数越多,一般判断这篇论文的权威性就越高。

7.AdaBoost

Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值。将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后融合起来,作为最后的决策分类器。

8.kNN:k-nearestneighborclassification

K最近邻(k-NearestNeighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。

9.NaiveBayes

在众多的分类模型中,应用最为广泛的两种分类模型是决策树模型(DecisionTreeModel)和朴素贝叶斯模型(NaiveBayesianModel,NBC)。朴素贝叶斯模型发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。同时,NBC模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。理论上,NBC模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为NBC模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,这给NBC模型的正确分类带来了一定影响。在属性个数比较多或者属性之间相关性较大时,NBC模型的分类效率比不上决策树模型。而在属性相关性较小时,NBC模型的性能最为良好。

10.CART:分类与回归树

CART,ClassificationandRegressionTrees。在分类树下面有两个关键的思想。第一个是关于递归地划分自变量空间的想法;第二个想法是用验证数据进行剪枝。


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:分析方法 数据挖掘 maximization expectation regression 准确率 信息

已有 1 人评分论坛币 学术水平 热心指数 信用等级 收起 理由
slrosssss + 5 + 4 + 4 + 4 楼主真帅

总评分: 论坛币 + 5  学术水平 + 4  热心指数 + 4  信用等级 + 4   查看全部评分

只想做一个勤勤恳恳的搬运工

沙发
slrosssss 在职认证  企业认证  发表于 2014-12-10 10:44:20
{:0_249:}{:0_249:}

藤椅
Mirror.. 在职认证  发表于 2014-12-10 10:45:51
slrosssss 发表于 2014-12-10 10:44
好酷     评点分

板凳
Mirror.. 在职认证  发表于 2014-12-10 10:48:14
slrosssss 发表于 2014-12-10 10:44
[kiss][kiss]

报纸
slrosssss 在职认证  企业认证  发表于 2014-12-10 10:51:20
Mirror.. 发表于 2014-12-10 10:48
      

地板
Mirror.. 在职认证  发表于 2014-12-10 10:52:07
slrosssss 发表于 2014-12-10 10:51
表害羞    你的头像很有个性啊

7
fjrong 在职认证  发表于 2014-12-10 10:53:47
谢谢分享

8
slrosssss 在职认证  企业认证  发表于 2014-12-10 10:54:59
Mirror.. 发表于 2014-12-10 10:52
表害羞    你的头像很有个性啊
头像是网吧开黑逗逼五连座,懂的自然懂{:2_27:}

9
liu0626 发表于 2014-12-10 10:58:18
好文章,学习了。

10
Mirror.. 在职认证  发表于 2014-12-10 11:01:08
fjrong 发表于 2014-12-10 10:53
谢谢分享

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群
GMT+8, 2025-12-9 05:54