|
没有问题
. webuse tvsfpors
. meologit thk prethk cc##tv || school:
Fitting fixed-effects model:
Iteration 0: log likelihood = -2212.775
Iteration 1: log likelihood = -2125.509
Iteration 2: log likelihood = -2125.1034
Iteration 3: log likelihood = -2125.1032
Refining starting values:
Grid node 0: log likelihood = -2136.2426
Fitting full model:
Iteration 0: log likelihood = -2136.2426 (not concave)
Iteration 1: log likelihood = -2120.2577
Iteration 2: log likelihood = -2119.7574
Iteration 3: log likelihood = -2119.7428
Iteration 4: log likelihood = -2119.7428
Mixed-effects ologit regression Number of obs = 1600
Group variable: school Number of groups = 28
Obs per group: min = 18
avg = 57.1
max = 137
Integration method: mvaghermite Integration points = 7
Wald chi2(4) = 128.06
Log likelihood = -2119.7428 Prob > chi2 = 0.0000
------------------------------------------------------------------------------
thk | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
prethk | .4032892 .03886 10.38 0.000 .327125 .4794534
1.cc | .9237904 .204074 4.53 0.000 .5238127 1.323768
1.tv | .2749937 .1977424 1.39 0.164 -.1125744 .6625618
|
cc#tv |
1 1 | -.4659256 .2845963 -1.64 0.102 -1.023724 .0918728
-------------+----------------------------------------------------------------
/cut1 | -.0884493 .1641062 -0.54 0.590 -.4100916 .233193
/cut2 | 1.153364 .165616 6.96 0.000 .8287625 1.477965
/cut3 | 2.33195 .1734199 13.45 0.000 1.992053 2.671846
-------------+----------------------------------------------------------------
school |
var(_cons)| .0735112 .0383106 .0264695 .2041551
------------------------------------------------------------------------------
LR test vs. ologit regression: chibar2(01) = 10.72 Prob>=chibar2 = 0.0005
. est stor m1
. meologit thk prethk cc##tv || school: || class:
Fitting fixed-effects model:
Iteration 0: log likelihood = -2212.775
Iteration 1: log likelihood = -2125.509
Iteration 2: log likelihood = -2125.1034
Iteration 3: log likelihood = -2125.1032
Refining starting values:
Grid node 0: log likelihood = -2152.1514
Fitting full model:
Iteration 0: log likelihood = -2152.1514 (not concave)
Iteration 1: log likelihood = -2125.9213 (not concave)
Iteration 2: log likelihood = -2120.1861
Iteration 3: log likelihood = -2115.6177
Iteration 4: log likelihood = -2114.5896
Iteration 5: log likelihood = -2114.5881
Iteration 6: log likelihood = -2114.5881
Mixed-effects ologit regression Number of obs = 1600
-----------------------------------------------------------
| No. of Observations per Group
Group Variable | Groups Minimum Average Maximum
----------------+------------------------------------------
school | 28 18 57.1 137
class | 135 1 11.9 28
-----------------------------------------------------------
Integration method: mvaghermite Integration points = 7
Wald chi2(4) = 124.39
Log likelihood = -2114.5881 Prob > chi2 = 0.0000
------------------------------------------------------------------------------
thk | Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
prethk | .4085273 .039616 10.31 0.000 .3308814 .4861731
1.cc | .8844369 .2099124 4.21 0.000 .4730161 1.295858
1.tv | .236448 .2049065 1.15 0.249 -.1651614 .6380575
|
cc#tv |
1 1 | -.3717699 .2958887 -1.26 0.209 -.951701 .2081612
-------------+----------------------------------------------------------------
/cut1 | -.0959459 .1688988 -0.57 0.570 -.4269815 .2350896
/cut2 | 1.177478 .1704946 6.91 0.000 .8433151 1.511642
/cut3 | 2.383672 .1786736 13.34 0.000 2.033478 2.733865
-------------+----------------------------------------------------------------
school |
var(_cons)| .0448735 .0425387 .0069997 .2876749
-------------+----------------------------------------------------------------
school>class |
var(_cons)| .1482157 .0637521 .063792 .3443674
------------------------------------------------------------------------------
LR test vs. ologit regression: chi2(2) = 21.03 Prob > chi2 = 0.0000
Note: LR test is conservative and provided only for reference.
. est stor m2
. estimates table m1 m2, b(%7.4f) se(%7.4f) stats(N r2_a)
----------------------------------
Variable | m1 m2
-------------+--------------------
thk |
prethk | 0.4033 0.4085
| 0.0389 0.0396
|
cc |
1 | 0.9238 0.8844
| 0.2041 0.2099
|
tv |
1 | 0.2750 0.2364
| 0.1977 0.2049
|
cc#tv |
1 1 | -0.4659 -0.3718
| 0.2846 0.2959
-------------+--------------------
cut1 |
_cons | -0.0884 -0.0959
| 0.1641 0.1689
-------------+--------------------
cut2 |
_cons | 1.1534 1.1775
| 0.1656 0.1705
-------------+--------------------
cut3 |
_cons | 2.3319 2.3837
| 0.1734 0.1787
-------------+--------------------
var(_cons[~) |
_cons | 0.0735 0.0449
| 0.0383 0.0425
-------------+--------------------
var(_cons[~) |
_cons | 0.1482
| 0.0638
-------------+--------------------
Statistics |
N | 1600 1600
r2_a |
----------------------------------
legend: b/se
|