楼主: Lisrelchen
1247 3

[Case Study]Data Mining using Proximus Algorithm(R) [推广有奖]

  • 0关注
  • 62粉丝

VIP

已卖:4194份资源

院士

67%

还不是VIP/贵宾

-

TA的文库  其他...

Bayesian NewOccidental

Spatial Data Analysis

东西方数据挖掘

威望
0
论坛币
50288 个
通用积分
83.6306
学术水平
253 点
热心指数
300 点
信用等级
208 点
经验
41518 点
帖子
3256
精华
14
在线时间
766 小时
注册时间
2006-5-4
最后登录
2022-11-6

楼主
Lisrelchen 发表于 2015-2-12 05:49:15 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

With the availability of large-scale computing platforms for high-fidelity design and simulations, and instrumentation for gathering scientific as well as business data, increased emphasis is being placed on efficient techniques for analyzing large and extremely high-dimensional data sets. These data sets may comprise discrete attributes, such as those from business processes, information retrieval, and bioinformatics, as well as continuous attributes such as those in scientific simulations, astrophysical measurements, and engineering design.

Analysis of high-dimensional data typically takes the form of extracting correlations between data items, discovering meaningful information in data, clustering data items, and finding efficient representations for clustered data, classification, and event association. Since the volume (and dimensionality) of data is typically large, the emphasis of new algorithms must be on efficiency and scalability to large data sets.

本帖隐藏的内容

Proximus.pdf (1.61 MB)


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Data Mining Case study Algorithm Using study continuous scientific techniques computing efficient

本帖被以下文库推荐

沙发
fengyg 企业认证  发表于 2015-2-12 06:51:31
kankan

藤椅
YONGHU33 发表于 2015-2-12 08:02:11
学习下,谢谢!

板凳
jgchen1966 发表于 2015-3-12 19:35:11

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2025-12-31 13:57