381 0

[英文文献] Using the Yield Curve in Forecasting Output Growth and In?flation-用收益率曲线预测产... [推广有奖]

  • 0关注
  • 0粉丝

等待验证会员

学前班

0%

还不是VIP/贵宾

-

威望
0
论坛币
0 个
通用积分
0
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
10 点
帖子
0
精华
0
在线时间
0 小时
注册时间
2020-9-19
最后登录
2020-9-19

楼主
普通地质学848 发表于 2004-11-16 19:38:17 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
英文文献:Using the Yield Curve in Forecasting Output Growth and In?flation-用收益率曲线预测产量增长和通货膨胀
英文文献作者:Eric Hillebrand,Huiyu Huang,Tae-Hwy Lee,Canlin Li
英文文献摘要:
Following Diebold and Li (2006), we use the Nelson-Siegel (NS, 1987) yield curve factors. However the NS yield curve factors are not supervised for a specifi?c forecast target in the sense that the same factors are used for forecasting different variables, e.g., output growth or infl?ation. We propose a modifed NS factor model, where the new NS yield curve factors are supervised for a specifi?c variable to forecast. We show it outperforms the conventional (non-supervised) NS factor model in out-of-sample forecasting of monthly US output growth and infl?ation. The original NS yield factor model is to combine information (CI) of predictors and uses factors of predictors (yield curve). The new supervised NS factor model is to combine forecasts (CF) and uses factors of forecasts of output growth or infl?ation conditional on the yield curve. We formalize the concept of supervision, and demonstrate analytically and numerically how supervision works. For both CF and CI schemes, principal components (PC) may be used in place of the NS factors. In out-of-sample forecasting of U.S. monthly output growth and infl?ation, we fi?nd that supervised CF-factor models (CF-NS, CF-PC) are substantially better than unsupervised CI-factor models (CI-NS, CI-PC), especially at longer forecast horizons.

继Diebold和Li(2006)之后,我们使用Nelson-Siegel (NS, 1987)收益率曲线因子。然而,NS收益率曲线因子没有被监管为一个特定的?c预测目标是指用相同的因素来预测不同的变量,例如,产出增长或infl?我们提出了一个修正的NS因子模型,其中新的NS收益曲线因子被监督一个特定的?c变量为预测。我们表明,在对美国月度产出增长和infl的样本外预测方面,它优于传统的(无监督的)NS因子模型。原始的NS收益率因子模型是将预测者的信息(CI)结合起来,使用预测者的因子(收益率曲线)。新的监督NS因素模型是结合预测(CF)和使用预测产出增长或infl?收益取决于收益率曲线。我们将监督的概念形式化,并通过分析和数字来演示监督是如何工作的。对于CF和CI方案,可以使用主成分(PC)来代替NS因子。在美国月度产出增长的样本外预测中?我们,fi吗?另外,有监督的CF-factor模型(CF-NS, CF-PC)比无监督的CI-factor模型(CI-NS, CI-PC)要好得多,尤其是在更长期的预测范围内。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝


您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-28 21:02