楼主: wangyyong01
1445 0

CalcIII_Complete [推广有奖]

  • 0关注
  • 10粉丝

VIP

已卖:1893份资源

副教授

9%

还不是VIP/贵宾

-

TA的文库  其他...

投资人-专注成长-wangyyong01

威望
0
论坛币
89899 个
通用积分
5.0380
学术水平
7 点
热心指数
15 点
信用等级
8 点
经验
11019 点
帖子
627
精华
0
在线时间
354 小时
注册时间
2007-3-8
最后登录
2025-4-21

楼主
wangyyong01 在职认证  发表于 2008-11-20 23:33:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

书名:CALCULUS CALCU LUS Ⅲ

 

作者:Paul Dawkins

 

文件格式:PDF

 

文件大小:1.94M

 

页数:286

 

资料类别:微积分

 

影印版

 

是否缺页:不缺

 

目录:

Preface .......................................................................................................................................... iii

Outline .......................................................................................................................................... iv

Three Dimensional Space.............................................................................................................. 1

Introduction ............................................................................................................................................... 1

The 3-D Coordinate System ....................................................................................................................... 3

Equations of Lines .................................................................................................................................... 9

Equations of Planes ................................................................................................................................. 15

Quadric Surfaces ..................................................................................................................................... 18

Functions of Several Variables ................................................................................................................ 24

Vector Functions ..................................................................................................................................... 31

Calculus with Vector Functions ............................................................................................................... 40

Tangent, Normal and Binormal Vectors .................................................................................................. 43

Arc Length with Vector Functions ........................................................................................................... 46

Curvature ................................................................................................................................................. 49

Velocity and Acceleration ........................................................................................................................ 51

Cylindrical Coordinates ........................................................................................................................... 54

Spherical Coordinates .............................................................................................................................. 56

Partial Derivatives ....................................................................................................................... 62

Introduction ............................................................................................................................................. 62

Limits ...................................................................................................................................................... 63

Partial Derivatives ................................................................................................................................... 68

Interpretations of Partial Derivatives ....................................................................................................... 77

Higher Order Partial Derivatives .............................................................................................................. 81

Differentials ............................................................................................................................................ 85

Chain Rule .............................................................................................................................................. 86

Directional Derivatives ............................................................................................................................ 96

Applications of Partial Derivatives .......................................................................................... 105

Introduction ............................................................................................................................................105

Tangent Planes and Linear Approximations ...........................................................................................106

Gradient Vector, Tangent Planes and Normal Lines ...............................................................................110

Relative Minimums and Maximums .......................................................................................................112

Absolute Minimums and Maximums ......................................................................................................121

Lagrange Multipliers ...............................................................................................................................129

Multiple Integrals ...................................................................................................................... 139

Introduction ............................................................................................................................................139

Double Integrals .....................................................................................................................................140

Iterated Integrals ....................................................................................................................................144

Double Integrals Over General Regions .................................................................................................151

Double Integrals in Polar Coordinates ....................................................................................................162

Triple Integrals .......................................................................................................................................173

Triple Integrals in Cylindrical Coordinates .............................................................................................181

Triple Integrals in Spherical Coordinates ................................................................................................184

Change of Variables ...............................................................................................................................188

Surface Area ...........................................................................................................................................197

Area and Volume Revisited ....................................................................................................................200

Line Integrals ............................................................................................................................. 201

Introduction ............................................................................................................................................201

Vector Fields ..........................................................................................................................................202

Line Integrals – Part I ..............................................................................................................................207

Line Integrals – Part II ............................................................................................................................218

Line Integrals of Vector Fields................................................................................................................221

Fundamental Theorem for Line Integrals ................................................................................................224

Conservative Vector Fields .....................................................................................................................228

Calculus III

© 2007 Paul Dawkins ii http://tutorial.math.lamar.edu/terms.aspx

Green’s Theorem ....................................................................................................................................235

Curl and Divergence ...............................................................................................................................243

Surface Integrals ........................................................................................................................ 247

Introduction ............................................................................................................................................247

Parametric Surfaces ................................................................................................................................248

Surface Integrals ....................................................................................................................................254

Surface Integrals of Vector Fields ...........................................................................................................263

Stokes’ Theorem ....................................................................................................................................273

Divergence Theorem ...............................................................................................................................278

268788.pdf (1.94 MB, 需要: 50 个论坛币)
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Complete CalcIII CalcII CalcI comp Complete CalcIII

股友欢迎添加微信:18623527620

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2026-1-1 22:50