1. 灰色系统基本概念
灰色系统产生于控制理论的研究中。
若一个系统的内部特征是完全已知的,即系统的信息是充足完全的,我们称之为白色系统。
若一个系统的内部信息是一无所知,一团漆黑,只能从它同外部的联系来观测研究,这种系统便是黑色系统。
灰色系统介于二者之间,灰色系统的一部分信息是已知的,一部分是未知的。
区别白色和灰色系统的重要标志是系统各因素间是否有确定的关系。
在工程技术、社会、经济、农业、生态、环境等各种系统中经常会遇到信息不完全的情况。比如:农业方面,农田耕作面积往往因许多非农业的因素而改变,因此很难准确计算农田产量、产值,这是缺乏耕地面积信息;生物防治方面,害虫与天敌间的关系即使是明确的,但天敌与饵料、害虫与害虫间的许多关系却不明确,这是缺乏生物间的关联信息;一项土建工程,尽管材料、设备、施工计划、图纸是齐备的,可是还很难估计施工进度与质量,这是缺乏劳动力及技术水平的信息;一般社会经济系统,除了输出的时间数据列(比如产值、产量、总收入、总支出等)外,其输入数据列不明确或者缺乏,因而难以建立确定的完整的模型,这是缺乏系统信息;工程系统是客观实体,有明确的“内”、“外”关系(即系统内部与系统外部,或系统本体与系统环境),可以较清楚地明确输入与输出,因此可以较方便地分析输入对输出的影响,可是社会、经济系统是抽象的对象,没有明确的“内”、“外”关系,不是客观实体,因此就难以分析输入(投入)对输出(产出)的影响,这是缺乏“模型信息”(即用什么模型,用什么量进行观测控制等信息)。信息不完全的情况归纳起来有:元素(参数)信息不完全;结构信息不完全;关系信息(特指“内”、“外”关系)不完全;运行的行为信息不完全。
一个商店可看作是一个系统,在人员、资金、损耗、销售信息完全明确的情况下,可算出该店的盈利大小、库存多少,可以判断商店的销售态势、资金的周转速度等,这样的系统是白色系统。
遥远的某个星球,也可以看作一个系统,虽然知道其存在,但体积多大,质量多少,距离地球多远,这些信息完全不知道,这样的系统是黑色系统。
人体是一个系统,人体的一些外部参数(如身高、体温、脉搏等)是已知的,而其他一些参数,如人体的穴位有多少,穴位的生物、化学、物理性能,生物的信息传递等尚未知道透彻,这样的系统是灰色系统。
显然,黑色、灰色、白色都是一种相对的概念。世界上没有绝对的白色系统,因为任何系统总有未确知的部分,也没有绝对的黑色系统,因为既然一无所知,也就无所谓该系统的存在了。
2.灰色系统的特点
灰色系统理论以“部分信息已知、部分信息未知”的 “小样本”、“贫信息”不确定型系统的研究对象。
(1)用灰色数学来处理不确定量,使之量化。
在数学发展史上,最早研究的是确定型的微分方程,即在拉普拉斯决定论框架内的数学。他认为一旦有了描写事物的微分方程及初值,就能确知事物任何时候的运动。随后发展了概率论与数理统计,用随机变量和随机过程来研究事物的状态和运动。模糊数学则研究没有清晰界限的事物,如儿童和少年之间没有确定的年龄界限加以截然划分等,它通过隶属函数来使模糊概念量化,因此能用模糊数学来描述如语言、不精确推理以及若干人文科学。灰色系统理论则认为不确定量是灰数,用灰色数学来处理不确定量,同样能使不确定量予以量化。
不确定量 量化(用确定量的方法研究)
1、概率论与数理统计; 2、模糊数学; 3、灰色数学(灰色系统理论)
(2)充分利用已知信息寻求系统的运动规律。
研究灰色系统的关键是如何使灰色系统白化、模型化、优化。
灰色系统视不确定量为灰色量。提出了灰色系统建模的具体数学方法,它能利用时间序列来确定微分方程的参数。灰色预测不是把观测到的数据序列视为一个随机过程,而是看作随时间变化的灰色量或灰色过程,通过累加生成和累减生成逐步使灰色量白化,从而建立相应于微分方程解的模型并做出预报。这样,对某些大系统和长期预测问题,就可以发挥作用。
(3)灰色系统理论能处理贫信息系统。
灰色预测模型只要求较短的观测资料即可,这和时间序列分析,多元分析等概率统计模型要求较长资料很不一样。因此,对于某些只有少量观测数据的项目来说,灰色预测是一种有用的工具。
3.灰色预测
灰色系统分析方法是通过鉴别系统因素之间发展趋势的相似或相异程度,即进行关联度分析,并通过对原始数据的生成处理来寻求系统变动的规律。生成数据序列有较强的规律性,可以用它来建立相应的微分方程模型,从而预测事物未来的发展趋势和未来状态。
灰色预测是用灰色模型GM(1,1)来进行定量分析的,通常分为以下几类:
(1) 灰色时间序列预测。用等时距观测到的反映预测对象特征的一系列数量(如产量、销量、人口数量、存款数量、利率等)构造灰色预测模型,预测未来某一时刻的特征量,或者达到某特征量的时间。
(2) 畸变预测(灾变预测)。通过模型预测异常值出现的时刻,预测异常值什么时候出现在特定时区内。
(3) 波形预测,或称为拓扑预测,它是通过灰色模型预测事物未来变动的轨迹。
(4) 系统预测,是对系统行为特征指标建立一族相互关联的灰色预测理论模型,在预测系统整体变化的同时,预测系统各个环节的变化。
上述灰色预测方法的共同特点是:
(1)允许少数数据预测;
(2)允许对灰因果律事件进行预测,比如
l 灰因白果律事件 在粮食生产预测中,影响粮食生产的因子很多,多到无法枚举,故为灰因,然而粮食产量却是具体的,故为白果。粮食预测即为灰因白果律事件预测。
l 白因灰果律事件 在开发项目前景预测时,开发项目的投入是具体的,为白因,而项目的效益暂时不很清楚,为灰果。项目前景预测即为灰因白果律事件预测。
(3)具有可检验性,包括:建模可行性的级比检验(事前检验),建模精度检验(模型检验),预测的滚动检验(预测检验)。
sas代码如下:
- data a1;
- input t year xt ;
- yt+xt;
- index=1;zt=-(yt+lag(yt))/2;
- datalines;
- 此处输入你的数据
- ;
- PROC IML ;
- USE a1 ;
- READ ALL VAR{zt index} INTO B WHERE(zt^= . ) ;
- READ ALL VAR{xt} INTO Yn WHERE(zt^= . ) ;
- ahat = INV(B`*B)*B`*Yn ;
- ahatt = ahat`;na = {a u} ;
- CREAT a2 FROM ahatt [COLNAME = na ] ;
- APPEND FROM ahatt ;
- QUIT ;
- DATA a3 ;
- SET a2 ;index = 1 ;
- DATA a4 ;
- SET a1 ; IF _N_ = 1 ;xt0 = xt ;
- KEEP xt0 index ;
- DATA a5 ;
- MERGE a1 a3 a4 ;BY index ;
- IF N = 1 THEN xp = xt ;
- ELSE DO
- yt1 = (xt0 - u/ a) * EXP( - a * (t - 1) ) + u/ a ;
- yt0 = (xt0 - u/ a) * EXP( - a * (t - 2) ) + u/ a ;
- xp = yt1 - yt0 ;
- END ;
- error = xp - xt ;
- rerror = error/ xt * 100 ;
- DROP yt index zt yt1 yt0 xt0 ;
- PROC PRINT DATA=a5;
- RUN;
复制代码