楼主: toumer
2054 5

[教材书籍] 随机方法教材Random Perturbation Methods with Applications in Science and Enginee [推广有奖]

  • 1关注
  • 0粉丝

幽雅之香

已卖:1411份资源

讲师

92%

还不是VIP/贵宾

-

威望
0
论坛币
4915 个
通用积分
9.6575
学术水平
4 点
热心指数
5 点
信用等级
2 点
经验
9863 点
帖子
248
精华
0
在线时间
737 小时
注册时间
2006-10-27
最后登录
2025-9-23

楼主
toumer 发表于 2015-11-6 14:35:50 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
This book has its roots in two different areas of mathematics: pure
mathematics, where structures are discovered in the context of other mathematical
structures and investigated, and applications of mathematics,
where mathematical structures are suggested by real–world problems arising
in science and engineering, investigated, and then used to address the
motivating problem. While there are philosophical differences between applied
and pure mathematical scientists, it is often difficult to sort them out.
The authors of this book reflect these different approaches.

Introduction 1
What Are Dynamical Systems? . . . . . . . . . . . . . . . . . . 1
What Is RandomNoise? . . . . . . . . . . . . . . . . . . . . . . 3
What Are Ergodic Theorems? . . . . . . . . . . . . . . . . . . . 8
What Happens for t Large? . . . . . . . . . . . . . . . . . . . . 18
What Is in This Book? . . . . . . . . . . . . . . . . . . . . . . . 21
1 Ergodic Theorems 49
1.1 Birkhoff’s Classical Ergodic Theorem . . . . . . . . . . . 49
1.1.1 Mixing Conditions . . . . . . . . . . . . . . . . . 53
1.1.2 Discrete–Time Stationary Processes . . . . . . . . 54
1.2 Discrete–TimeMarkov Processes . . . . . . . . . . . . . 56
1.3 Continuous–Time Stationary Processes . . . . . . . . . . 60
1.4 Continuous–TimeMarkov Processes . . . . . . . . . . . . 61
2 Convergence Properties of Stochastic Processes 64
2.1 Weak Convergence of Stochastic Processes . . . . . . . . 64
2.1.1 Weak Compactness in C . . . . . . . . . . . . . . 66
2.2 Convergence to a Diffusion Process . . . . . . . . . . . . 68
2.2.1 Diffusion Processes . . . . . . . . . . . . . . . . . 68
2.2.2 Weak Convergence to a Diffusion Process . . . . . 70
2.3 Central Limit Theorems for Stochastic Processes . . . . 73
viii Contents
2.3.1 Continuous–TimeMarkov Processes . . . . . . . . 73
2.3.2 Discrete–TimeMarkov Processes . . . . . . . . . 75
2.3.3 Discrete–Time Stationary Processes . . . . . . . . 76
2.3.4 Continuous–Time Stationary Processes . . . . . . 79
2.4 Large Deviation Theorems . . . . . . . . . . . . . . . . . 80
2.4.1 Continuous–TimeMarkov Processes . . . . . . . . 81
2.4.2 Discrete–TimeMarkov Processes . . . . . . . . . 86
3 Averaging 88
3.1 Volterra Integral Equations . . . . . . . . . . . . . . . . . 88
3.1.1 Linear Volterra Integral Equations . . . . . . . . 92
3.1.2 Some Nonlinear Equations . . . . . . . . . . . . . 97
3.2 Differential Equations . . . . . . . . . . . . . . . . . . . . 99
3.2.1 Linear Differential Equations . . . . . . . . . . . . 101
3.3 Difference Equations . . . . . . . . . . . . . . . . . . . . 102
3.3.1 Linear Difference Equations . . . . . . . . . . . . 105
3.4 Large Deviation for Differential Equations . . . . . . . . 105
3.4.1 Some Auxiliary Results . . . . . . . . . . . . . . . 106
3.4.2 Main Theorem. . . . . . . . . . . . . . . . . . . . 110
3.4.3 Systems with Additive Perturbations . . . . . . . 112
4 Normal Deviations 114
4.1 Volterra Integral Equations . . . . . . . . . . . . . . . . . 114
4.2 Differential Equations . . . . . . . . . . . . . . . . . . . . 120
4.2.1 Markov Perturbations . . . . . . . . . . . . . . . 127
4.3 Difference Equations . . . . . . . . . . . . . . . . . . . . 128
5 Diffusion Approximation 133
5.1 Differential Equations . . . . . . . . . . . . . . . . . . . . 133
5.1.1 Markov Jump Perturbations . . . . . . . . . . . . 134
5.1.2 Some Generalizations . . . . . . . . . . . . . . . . 140
5.1.3 GeneralMarkov Perturbations . . . . . . . . . . . 145
5.1.4 Stationary Perturbations . . . . . . . . . . . . . . 146
5.1.5 Diffusion Approximations to First Integrals . . . 150
5.2 Difference Equations . . . . . . . . . . . . . . . . . . . . 156
5.2.1 Markov Perturbations . . . . . . . . . . . . . . . 156
5.2.2 Diffusion Approximations to First Integrals . . . 161
5.2.3 Stationary Perturbations . . . . . . . . . . . . . . 166
6 Stability 172
6.1 Stability of Perturbed Differential Equations . . . . . . . 172
6.1.1 Jump Perturbations of Nonlinear Equations . . . 173
6.1.2 Stationary Perturbations . . . . . . . . . . . . . . 182
6.2 Stochastic Resonance for Gradient Systems . . . . . . . . 193
6.2.1 Large Deviations near a Stable Static State . . . 193
Contents ix
6.2.2 Transitions Between Stable Static States . . . . . 198
6.2.3 Stochastic Resonance . . . . . . . . . . . . . . . 199
6.3 Randomly Perturbed Difference Equations . . . . . . . . 200
6.3.1 Markov Perturbations: Linear Equations . . . . . 201
6.3.2 Stationary Perturbations . . . . . . . . . . . . . . 203
6.3.3 Markov Perturbations: Nonlinear Equations . . . 205
6.3.4 Stationary Perturbations . . . . . . . . . . . . . . 210
6.3.5 Small Perturbations of a Stable System . . . . . . 211
6.4 Convolution Integral Equations . . . . . . . . . . . . . . 216
6.4.1 Laplace Transforms and Their Inverses . . . . . . 218
6.4.2 Laplace Transforms of Noisy Kernels . . . . . . . 222
7 Markov Chains with Random Transition Probabilities 232
7.1 Stationary RandomEnvironment . . . . . . . . . . . . . 233
7.2 Weakly RandomEnvironments . . . . . . . . . . . . . . 243
7.3 Markov Processes with Randomly Perturbed
Transition Probabilities . . . . . . . . . . . . . . . . . . . 249
7.3.1 Stationary RandomEnvironments . . . . . . . . . 249
7.3.2 Ergodic Theorem for Markov Processes
in RandomEnvironments . . . . . . . . . . . . . 253
7.3.3 Markov Process in a Weakly Random
Environment . . . . . . . . . . . . . . . . . . . . . 254
8 Randomly Perturbed Mechanical Systems 257
8.1 Conservative Systems with Two Degrees of Freedom . . . 257
8.1.1 Conservative Systems . . . . . . . . . . . . . . . . 258
8.1.2 Randomly Perturbed Conservative Systems . . . 262
8.1.3 Behavior of the Perturbed System
near a Knot . . . . . . . . . . . . . . . . . . . . . 273
8.1.4 Diffusion Processes on Graphs . . . . . . . . . . . 285
8.1.5 Simulation of a Two-Well Potential Problem . . . 290
8.2 Linear Oscillating Conservative Systems . . . . . . . . . 290
8.2.1 Free Linear Oscillating Conservative Systems . . 290
8.2.2 Randomly Perturbed Linear
Oscillating Systems . . . . . . . . . . . . . . . . . 293
8.3 A Rigid Body with a Fixed Point . . . . . . . . . . . . . 297
8.3.1 Motion of a Rigid Body around
a Fixed Point . . . . . . . . . . . . . . . . . . . . 298
8.3.2 Analysis of Randomly PerturbedMotions . . . . 299
9 Dynamical Systems on a Torus 303
9.1 Theory of Rotation Numbers . . . . . . . . . . . . . . . . 303
9.1.1 Existence of the Rotation Number . . . . . . . . 305
9.1.2 Purely Periodic Systems . . . . . . . . . . . . . . 307
9.1.3 Ergodic Systems . . . . . . . . . . . . . . . . . . . 308
x Contents
9.1.4 Simulation of Rotation Numbers . . . . . . . . . . 310
9.2 Randomly Perturbed Torus Flows . . . . . . . . . . . . . 311
9.2.1 Rotation

本帖隐藏的内容

[Anatoli_V._Skorokhod,_Frank_C._Hoppensteadt,_Habi(BookZZ.org) (1).pdf (2.66 MB, 需要: 10 个论坛币)



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Perturbation Applications Application Methods Science Random different difficult problems address

已有 2 人评分经验 论坛币 学术水平 热心指数 收起 理由
残阳_等待 + 60 + 20 精彩帖子
hylpy1 + 60 + 20 + 1 + 1 精彩帖子

总评分: 经验 + 120  论坛币 + 40  学术水平 + 1  热心指数 + 1   查看全部评分

本帖被以下文库推荐

沙发
jjxm20060807(真实交易用户) 发表于 2015-11-7 08:35:50
谢谢分享

藤椅
hylpy1(未真实交易用户) 在职认证  发表于 2015-11-7 13:05:31
感谢分享资源

板凳
aggiewe(未真实交易用户) 发表于 2015-11-7 21:44:01
see...........................

报纸
残阳_等待(未真实交易用户) 发表于 2015-11-8 10:48:22
感谢分享资源

地板
wusuowei111(未真实交易用户) 发表于 2015-11-26 10:08:50
十分感谢 一直在找这个 希望这个就是我找的那个

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-9 05:31