楼主: oliyiyi
1005 2

Likelihood Component Analysis [推广有奖]

版主

已卖:2994份资源

泰斗

1%

还不是VIP/贵宾

-

TA的文库  其他...

计量文库

威望
7
论坛币
66105 个
通用积分
31671.0967
学术水平
1454 点
热心指数
1573 点
信用等级
1364 点
经验
384134 点
帖子
9629
精华
66
在线时间
5508 小时
注册时间
2007-5-21
最后登录
2025-7-8

初级学术勋章 初级热心勋章 初级信用勋章 中级信用勋章 中级学术勋章 中级热心勋章 高级热心勋章 高级学术勋章 高级信用勋章 特级热心勋章 特级学术勋章 特级信用勋章

楼主
oliyiyi 发表于 2015-11-6 18:51:49 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Likelihood Component Analysis. (arXiv:1511.01609v1 [stat.ME])
[/url][url=]






由 Benjamin B. Risk, David S. Matteson, David Ruppert[url=][/url] 通过 stat updates on arXiv.org[url=][/url]




Independent component analysis (ICA) is popular in many applications, including cognitive neuroscience and signal processing. Due to computational constraints, principal component analysis is used for dimension reduction prior to ICA (PCA+ICA), which could remove important information. The problem is that interesting independent components (ICs) could be mixed in several principal components that are discarded and then these ICs cannot be recovered. To address this issue, we propose likelihood component analysis (LCA), a novel methodology in which dimension reduction and latent variable estimation is achieved simultaneously by maximizing a likelihood with Gaussian and non-Gaussian components. We present a parametric LCA model using the logistic density and a semi-parametric LCA model using tilted Gaussians with cubic B-splines. We implement an algorithm scalable to datasets common in applications (e.g., hundreds of thousands of observations across hundreds of variables with dozens of latent components). In simulations, our methods recover latent components that are discarded by PCA+ICA methods. We apply our method to dependent multivariate data and demonstrate that LCA is a useful data visualization and dimension reduction tool that reveals features not apparent from PCA or PCA+ICA. We also apply our method to an experiment from the Human Connectome Project with state-of-the-art temporal and spatial resolution and identify an artifact using LCA that was missed by PCA+ICA. We present theoretical results on identifiability of the LCA model and consistency of our estimator.


二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Likelihood Component Analysis Analysi alysis important including principal popular

缺少币币的网友请访问有奖回帖集合
https://bbs.pinggu.org/thread-3990750-1-1.html

沙发
oliyiyi 发表于 2015-11-6 18:52:20
谁有兴趣,一块来交流一下这篇paper

藤椅
seahhj 发表于 2015-11-6 19:53:50
thanks for sharing
已有 1 人评分论坛币 收起 理由
oliyiyi + 3 精彩帖子

总评分: 论坛币 + 3   查看全部评分

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群
GMT+8, 2025-12-31 21:11