- 阅读权限
- 255
- 威望
- 0 级
- 论坛币
- 50288 个
- 通用积分
- 83.6906
- 学术水平
- 253 点
- 热心指数
- 300 点
- 信用等级
- 208 点
- 经验
- 41518 点
- 帖子
- 3256
- 精华
- 14
- 在线时间
- 766 小时
- 注册时间
- 2006-5-4
- 最后登录
- 2022-11-6
已卖:4194份资源
院士
还不是VIP/贵宾
TA的文库 其他... Bayesian NewOccidental
Spatial Data Analysis
东西方数据挖掘
- 威望
- 0 级
- 论坛币
 - 50288 个
- 通用积分
- 83.6906
- 学术水平
- 253 点
- 热心指数
- 300 点
- 信用等级
- 208 点
- 经验
- 41518 点
- 帖子
- 3256
- 精华
- 14
- 在线时间
- 766 小时
- 注册时间
- 2006-5-4
- 最后登录
- 2022-11-6
|
经管之家送您一份
应届毕业生专属福利!
求职就业群
感谢您参与论坛问题回答
经管之家送您两个论坛币!
+2 论坛币
- package org.apache.spark.examples.ml;
- import java.util.regex.Pattern;
- import org.apache.spark.SparkConf;
- import org.apache.spark.api.java.JavaRDD;
- import org.apache.spark.api.java.JavaSparkContext;
- import org.apache.spark.api.java.function.Function;
- import org.apache.spark.ml.clustering.KMeansModel;
- import org.apache.spark.ml.clustering.KMeans;
- import org.apache.spark.mllib.linalg.Vector;
- import org.apache.spark.mllib.linalg.VectorUDT;
- import org.apache.spark.mllib.linalg.Vectors;
- import org.apache.spark.sql.DataFrame;
- import org.apache.spark.sql.Row;
- import org.apache.spark.sql.SQLContext;
- import org.apache.spark.sql.catalyst.expressions.GenericRow;
- import org.apache.spark.sql.types.Metadata;
- import org.apache.spark.sql.types.StructField;
- import org.apache.spark.sql.types.StructType;
- /**
- * An example demonstrating a k-means clustering.
- * Run with
- * <pre>
- * bin/run-example ml.JavaSimpleParamsExample <file> <k>
- * </pre>
- */
- public class JavaKMeansExample {
- private static class ParsePoint implements Function<String, Row> {
- private static final Pattern separator = Pattern.compile(" ");
- @Override
- public Row call(String line) {
- String[] tok = separator.split(line);
- double[] point = new double[tok.length];
- for (int i = 0; i < tok.length; ++i) {
- point[i] = Double.parseDouble(tok[i]);
- }
- Vector[] points = {Vectors.dense(point)};
- return new GenericRow(points);
- }
- }
- public static void main(String[] args) {
- if (args.length != 2) {
- System.err.println("Usage: ml.JavaKMeansExample <file> <k>");
- System.exit(1);
- }
- String inputFile = args[0];
- int k = Integer.parseInt(args[1]);
- // Parses the arguments
- SparkConf conf = new SparkConf().setAppName("JavaKMeansExample");
- JavaSparkContext jsc = new JavaSparkContext(conf);
- SQLContext sqlContext = new SQLContext(jsc);
- // Loads data
- JavaRDD<Row> points = jsc.textFile(inputFile).map(new ParsePoint());
- StructField[] fields = {new StructField("features", new VectorUDT(), false, Metadata.empty())};
- StructType schema = new StructType(fields);
- DataFrame dataset = sqlContext.createDataFrame(points, schema);
- // Trains a k-means model
- KMeans kmeans = new KMeans()
- .setK(k);
- KMeansModel model = kmeans.fit(dataset);
- // Shows the result
- Vector[] centers = model.clusterCenters();
- System.out.println("Cluster Centers: ");
- for (Vector center: centers) {
- System.out.println(center);
- }
- jsc.stop();
- }
- }
复制代码
扫码加我 拉你入群
请注明:姓名-公司-职位
以便审核进群资格,未注明则拒绝
|
|
|