经管之家送您一份
应届毕业生专属福利!
求职就业群
感谢您参与论坛问题回答
经管之家送您两个论坛币!
+2 论坛币
- from __future__ import print_function
- from pyspark import SparkContext
- from pyspark.sql import SQLContext
- # $example on$
- from pyspark.ml.regression import AFTSurvivalRegression
- from pyspark.mllib.linalg import Vectors
- # $example off$
- if __name__ == "__main__":
- sc = SparkContext(appName="AFTSurvivalRegressionExample")
- sqlContext = SQLContext(sc)
- # $example on$
- training = sqlContext.createDataFrame([
- (1.218, 1.0, Vectors.dense(1.560, -0.605)),
- (2.949, 0.0, Vectors.dense(0.346, 2.158)),
- (3.627, 0.0, Vectors.dense(1.380, 0.231)),
- (0.273, 1.0, Vectors.dense(0.520, 1.151)),
- (4.199, 0.0, Vectors.dense(0.795, -0.226))], ["label", "censor", "features"])
- quantileProbabilities = [0.3, 0.6]
- aft = AFTSurvivalRegression(quantileProbabilities=quantileProbabilities,
- quantilesCol="quantiles")
- model = aft.fit(training)
- # Print the coefficients, intercept and scale parameter for AFT survival regression
- print("Coefficients: " + str(model.coefficients))
- print("Intercept: " + str(model.intercept))
- print("Scale: " + str(model.scale))
- model.transform(training).show(truncate=False)
- # $example off$
- sc.stop()
复制代码
扫码加我 拉你入群
请注明:姓名-公司-职位
以便审核进群资格,未注明则拒绝
|