楼主: 8515872
14008 7

[问答] 关于KMO and bartletts test请教大家 [推广有奖]

  • 0关注
  • 0粉丝

初中生

66%

还不是VIP/贵宾

-

威望
0
论坛币
23 个
通用积分
0
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
154 点
帖子
13
精华
0
在线时间
1 小时
注册时间
2009-1-6
最后登录
2022-5-3

楼主
8515872 发表于 2009-1-12 19:38:00 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币

用spss做是否合适因子分析的验证,determinant=0,没有得出KMO and bartlett's test对话框,

是什么原因呢?请教大家,

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Bartletts Bartlett Bartle test Bart test KMO Bartletts

回帖推荐

orochieh 发表于2楼  查看完整内容

你选择的变量太多了,变量之间多重共线的情况比较严重,所以出不来KMO的值和巴特利特球度检验,建议你删减一些意义不是很大的变量再做因子分析就可以显示了。我也看过很多论文,都不报告KMO值,然后就做,有的时候这样做出来因子得分可能非常符合预期,但是事实上,确实有失偏颇的。因子分析,我有时候觉得科学的意义并不大,因子的选择主观成分太大了,我可能说的不对,权作参考吧!

本帖被以下文库推荐

沙发
orochieh 发表于 2009-1-12 19:45:00

你选择的变量太多了,变量之间多重共线的情况比较严重,所以出不来KMO的值和巴特利特球度检验,建议你删减一些意义不是很大的变量再做因子分析就可以显示了。我也看过很多论文,都不报告KMO值,然后就做,有的时候这样做出来因子得分可能非常符合预期,但是事实上,确实有失偏颇的。

因子分析,我有时候觉得科学的意义并不大,因子的选择主观成分太大了,我可能说的不对,权作参考吧!

已有 1 人评分经验 论坛币 收起 理由
bakoll + 3 + 3 精彩帖子

总评分: 经验 + 3  论坛币 + 3   查看全部评分

[b]万物并作 吾以观复[/b]

藤椅
8515872 发表于 2009-1-12 20:20:00

非常感谢

板凳
ECSTAR520 发表于 2009-3-5 08:49:00

2楼的

你选择的变量太多了,变量之间多重共线的情况比较严重,所以出不来KMO的值和巴特利特球度检验,建议你删减一些意义不是很大的变量再做因子分析就可以显示了。我也看过很多论文,都不报告KMO值,然后就做,有的时候这样做出来因子得分可能非常符合预期,但是事实上,确实有失偏颇的。

因子分析,我有时候觉得科学的意义并不大,因子的选择主观成分太大了,我可能说的不对,权作参考吧!

本文来自: 人大经济论坛(http://www.pinggu.org) 详细出处参考:https://bbs.pinggu.org/thread-407316-1-1.html

正因为此

所以才需要检验

不合适就不能减少数据  强行分析

我自横刀向天笑,笑完我就去睡觉....

报纸
埃德蒙 发表于 2009-8-13 11:45:48
顶一个。。。。。。。。。

地板
ReneeBK 发表于 2014-4-11 09:39:08
In response to your second question, the KMO and AIC (anti-image correlation) are not printed when the correlation matrix is nonpositive definite, which seems likely to apply from your description of the numbers of cases and variables in your study. I've pasted a related resolution from the support web site
( http://support.spss.com ) below.

David Matheson
SPSS Statistical Support

*********************


Resolution number: 20414  Created on: Aug 21 2001  Last Reviewed on: Feb 28 2009

Problem Subject:  FACTOR does not print KMO or Bartlett test for Nonpositive Definite Matrices

Problem Description:  I have run the SPSS FACTOR procedure with principal components analysis (PCA) as the extraction method. I requested the Kaiser-Mayer-Olkin (KMO) measure of sample adequacy and the Bartlett test of sphericity but neither of these measures was printed. The "Communalities", "Total Variance Explained" and "Component Matrix" tables were printed. Why was my request for KMO and Bartlett's sphericity test ignored?

Resolution Subject: KMO, Bartlett's sphericity, and anti-image correlation not printed for nonpositive definite matrices

Resolution Description:
It is likely the case that your correlation matrix is nonpositive definite (NPD), i.e., that some of the eigenvalues of your correlation matrix are not positive numbers. If this is the case, there will be a footnote to the correlation matrix that states "This matrix is not positive definite." Even if you did not request the correlation matrix as part of the FACTOR output, requesting the KMO or Bartlett test will cause the title "Correlation Matrix" to be printed. The footnote will be printed under this title if the correlation matrix was not requested. An NPD matrix will also result in suppression of other output from the 'Descriptives' dialog of the Factor dialog, namely the inverse of the correlation matrix, the anti-image correlation matrix, and the significance values for the correlations. If you had requested a factor extraction method other than PCA or unweighted least squares (ULS), an NPD matrix would have caused the procedure to stop without further analysis.

Matrices can be NPD as a result of various other properties. A correlation matrix will be NPD if there are linear dependencies among the variables, as reflected by one or more eigenvalues of 0. For example, if variable X12 can be reproduced by a weighted sum of variables X5, X7, and X10, then there is a linear dependency among those variables and the correlation matrix that includes them will be NPD. If there are more variables in the analysis than there are cases, then the correlation matrix will have linear dependencies and be NPD. Remember that FACTOR uses listwise deletion of cases with missing data by default. If you had more cases in the file than variables in the analysis but also had many missing values, listwise deletion could leave you with more variables than retained cases. Pairwise deletion of missing data can also lead to NPD matrices. Negative eigenvalues may be present in these situations. See the following chapter for a helpful discussion and illustration of!
  how this
can happen.

Wothke, W. (1993) Nonpositive definite matrices in structural modeling. In K.A. Bollen & J.S. Long (Eds.), Testing Structural Equation Models. Newbury Park NJ: Sage. (Chap. 11, pp. 256-293).

Elements of the KMO and Bartlett test statistic can not be calculated if the correlation matrix is NPD. See the formulae for these statistics in the current Statistical Algorithms documentation by clicking Help->Algorithms in SPSS, then scrolling down to the link for Factor Algorithms. Then click the link for Optional Statistics. . The formulae are also on page 20 of the Factor chapter at
http://support.spss.com/ProductsExt/SPSS/Documentation/Statistics/algorithms/14.0/factor.pdf

The Bartlett formula includes the log of the determinant of the correlation matrix. If there are linear dependencies, then the determinant of the matrix will be 0 and its log will be undefined. The KMO measure formula includes elements of the anti-image covariance matrix, whose calculation involves the inverse of the correlation matrix. If the correlation matrix has linear dependencies, then its inverse can not be computed.

Apart from the inability to print the KMO or Bartlett's test, the presence of an NPD correlation matrix may lead you to rethink the choice of variables or attempt to acquire data on a larger sample to achieve more reliable results.

7
猎户星云 发表于 2014-10-25 23:02:57
关注一下

8
matlab-007 发表于 2016-2-29 17:30:15
可能是因为你的数据量太少了,相关矩阵非正定。不能达到那个数据量≥50+变量的标准,建议增加数据量试试

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注cda
拉您进交流群
GMT+8, 2025-12-6 02:02