举个例子来说,“假如分析结果为: x1和x2对y1,y2,y3,y4,影响都大,能不能把x对y影响大小,进行排序。 另外,假如x3对y2,y3影响较小,x3对 y4影响大”,以及相互影响的关系如何,求比较详细的分析表述过程, 为什么是这样的?
典型载荷,或者系数关系, x1,x2,x3对 y1,y2,y3,y3 的影响大小、????
| Run MATRIX procedure: | ||
| Correlations for Set-1 | ||
| x1 x2 x3 | ||
| x1 1.0000 -.8282 -.6732 | ||
| x2 -.8282 1.0000 .1431 | ||
| x3 -.6732 .1431 1.0000 | ||
| Correlations for Set-2 | ||
| y1 y2 y3 y4 | ||
| y1 1.0000 -.3116 .6191 -.1366 | ||
| y2 -.3116 1.0000 .3608 .8430 | ||
| y3 .6191 .3608 1.0000 .5932 | ||
| y4 -.1366 .8430 .5932 1.0000 | ||
| Correlations Between Set-1 and Set-2 | ||
| y1 y2 y3 y4 | ||
| x1 .4231 -.9148 -.2973 -.9104 | ||
| x2 -.1690 .8504 .2733 .7697 | ||
| x3 -.5242 .4933 .1646 .5921 | ||
| Canonical Correlations | ||
| 1 .981 | ||
| 2 .796 | ||
| 3 .247 | ||
| Test that remaining correlations are zero: | ||
| Wilk's Chi-SQ DF Sig. | ||
| 1 .013 39.079 12.000 .000 | ||
| 2 .344 9.601 6.000 .142 | ||
| 3 .939 .566 2.000 .754 | ||
| Standardized Canonical Coefficients for Set-1 | ||
| 1 2 3 | ||
| x1 142.054 -1000.38 2519.971 | ||
| x2 106.926 -746.817 1882.945 | ||
| x3 80.949 -567.312 1426.700 | ||
| 这个系数为什么这么大?? | ||
| Raw Canonical Coefficients for Set-1 | ||
| 1 2 3 | ||
| x1 108.582 -764.657 1926.190 | ||
| x2 109.387 -764.004 1926.278 | ||
| x3 109.292 -765.950 1926.245 | ||
| Standardized Canonical Coefficients for Set-2 | ||
| 1 2 3 | ||
| y1 -.012 1.966 .251 | ||
| y2 .398 1.115 -.197 | ||
| y3 -.264 -1.925 .844 | ||
| y4 .753 .380 .018 | ||
| Raw Canonical Coefficients for Set-2 | ||
| 1 2 3 | ||
| y1 .000 .002 .000 | ||
| y2 .000 .000 .000 | ||
| y3 .000 .000 .000 | ||
| y4 .001 .000 .000 | ||
| Canonical Loadings for Set-1 | ||
| 1 2 3 | ||
| x1 -.996 .047 .075 | ||
| x2 .865 .481 .142 | ||
| x3 .617 -.719 -.320 | ||
| Cross Loadings for Set-1 | ||
| 1 2 3 | ||
| x1 -.977 .038 .019 | ||
| x2 .849 .383 .035 | ||
| x3 .606 -.572 -.079 | ||
| Canonical Loadings for Set-2 | ||
| 1 2 3 | ||
| y1 -.403 .375 .833 | ||
| y2 .942 .129 .045 | ||
| y3 .319 -.080 .940 | ||
| y4 .934 -.090 .319 | ||
| Cross Loadings for Set-2 | ||
| 1 2 3 | ||
| y1 -.395 .298 .206 | ||
| y2 .924 .103 .011 | ||
| y3 .313 -.063 .232 | ||
| y4 .917 -.072 .079 | ||
| Redundancy Analysis: | ||
| Proportion of Variance of Set-1 Explained by Its Own Can. Var. | ||
| Prop Var | ||
| CV1-1 .707 | ||
| CV1-2 .250 | ||
| CV1-3 .043 | ||
| Proportion of Variance of Set-1 Explained by Opposite Can.Var. | ||
| Prop Var | ||
| CV2-1 .681 | ||
| CV2-2 .158 | ||
| CV2-3 .003 | ||
| Proportion of Variance of Set-2 Explained by Its Own Can. Var. | ||
| Prop Var | ||
| CV2-1 .506 | ||
| CV2-2 .043 | ||
| CV2-3 .420 | ||
| Proportion of Variance of Set-2 Explained by Opposite Can. Var. | ||
| Prop Var | ||
| CV1-1 .487 | ||
| CV1-2 .027 | ||
| CV1-3 .026 | ||
| ------ END MATRIX ----- | ||


雷达卡





京公网安备 11010802022788号







